الجزء الثانى-جولة فى جسم الانسان

    • الجزء الثانى-جولة فى جسم الانسان

      الجهاز العصبى
      Nervous System



      الجهاز العصبي ينقسم إلى قسمين رئيسيين :

      1- الجهاز العصبي المركزي Central Nervous System "CNS" .
      2- الجهاز العصبي المُحيطي Peripheral Nervous System .
      وحدة بناء الجهاز العصبي هي العصبون (الخلية العصبية) Neurone , و الجهاز العصبي في الإنسان يتكون من نوعين أساسيين من الخلايا , هما الخلايا الدبقية Glial Cells و العصبونات Neurons.

      و العصبون يتكون من جسم Cell Body و محور Axon , و جسم الخلية يحتوي على نواة الخلية و يبرز من سطحة تغصنات أو تشعبات للخارج لها علاقة في إستقبال أو نقل الإشارات الكهربائية , و يستقبل جسم العصبون الإشارات الكهربائية (العصبية) من العصبونات الأخرى عن طريق التغصنات Dendrites من جسم عصبون آخر أو من محور عصبون آخر عن طريق مشابك Synapsis , و المشبك هو عبارة عن فضاء عند إلتقاء غصن عصبون أو محور عصبون مع جسم خلية عصبون آخر لنقل الإشارات الكهربائية عن طريق مواد كيماوية تُسمى الناقلات العصبية Neurotransmitters و هي عديدة و منها الأسيتايل كولين Acetylcholine و الأدرينالين Adrenaline و النورأدرينالين Noradrenaline.
      محور العصبون Axon هو عبارة عن إمتداد يخرج من جسم الخلية و ينقل الإشارات الكهربائية من العصبون. و المحور مُغلف من الخارج بصفائح المايلين (النُخاعين) Myelin Sheaths و هي عبارة عن مادة عازلة للمحور و ضرورية لنقل الإشارات الكهربائية فيه , في الجهاز العصبي المركزي الخلايا الدبقية قليلة التغصنات Oligodendrocytes هي المسؤولة عن إنتاج النُخاعين , أما في الجهاز العصبي المُحيطي فخلايا شوان Schwann Cells هي المسؤولة عن إنتاج النُخاعين (المايلين).

      في الجهاز العصبي تتجمع أجسام العصبونات في مجاميع , و هذه المجاميع في الجهاز العصبي المركزي تُسمى نواةNucleus أو عُقدة Ganglion , أما في الجهاز العصبي المُحيطي فتُسمى هذه المجاميع , عُقد (مُفرد "عُقدة") Ganglion.
      كذلك تتجمع محاور العصبونات مع بعضها لتكون الأعصاب Nerves, و الأعصاب تنقسم من حيث موقعها من العُقدة إلى نوعين :

      1- أعصاب ما قبل العُقدة Pre-Ganglionic Nerves.
      2- أعصاب ما بعد العُقدة Post-Ganglionic Nerves.

      في الجهاز العصبي , أعصاب (محاور أجسام العصبونات) ما قبل العُقدة تتشابك مع أجسام العصبونات التي ينشأ منها أعصاب ما بعد العُقدة خلال المشابك في العُقد لنقل الإشارات الكهربائية.يُمكننا القول أو تشبيه العُقد بمحطات قطار يتم فيها نقل الحمولة (الإشارات الكهربائية العصبية) من قطار لآخر ليتم في النهاية توصيلها للعضو المطلوب.


      الخلايا الدبقية Glial Cells هي خلايا مُساندة للعصبونات في الجهاز العصبي و لا تُشارك في نقل الإشارات العصبية (الكهربائية). و يبلغ عدد الخلايا الدبقية تقريباً عشرة أضعاف عدد العصبونات في الجهاز العصبي , و لكن بما أن حجم الخلية الدبقية يساوي عُشر حجم العصبون فهما يشغلان نفس الحيز (الكتلة) في الجهاز العصبي. تسمية الخلايا الدبقية مُشتقة من الكلمة اللاتينية "غليا" (Glia) و التي تعني الدبق أو الغراء أو الصمغ و ذلك للإعتقاد السائد سابقاً بأن عملها الأساسي هو الربط بين العصبونات (كالإسمنت في البناء).

      يتلخص عمل الخلايا الدبقية بالآتي:

      1. تعمل كدُعامة و سند للعصبونات.
      2. تعمل كعازل للشحنات الكهربائية بين العصبونات و بين المشابك.
      3. تعمل كناقل غذاء للعصبونات.
      4. تعمل كمزيل للخلايا التالفة و الميتة , و تفرز مواد مُحفزة لنمو العصبونات.
      5. المحافظة على التركيبة الأيونية (الكهربائية) Ionic Composition للسوائل خارج العصبونات ExtraCellular Fluids.

      هناك أربعة أنواع من الخلايا الدبقية , هي:

      1) الخلايا الدبقية النجمية Astrocytes:
      الخلايا الدبقية النجمية هي أكبر الخلايا الدبقية حجماً , و سُميت بالنجمية لكثرة تشعباتها البارزة للخارج من الخلية كشعاع النجم Astro. تشعبات الخلايا النجمية تربط ما بين الأوعية الدموية و العصبونات لنقل الغذاء إليها. و لديها القدرة على تحويل الجلوكوز Glucose إلى اللاكتيت Lactate الأسهل إستخداماً لإنتاج الطاقة في العصبونات. الخلايا النجمية لديها القدرة كذلك على تحويل الجلوكوز إلى الجلايكوجين Glycogen لتخزينه و استخدامه عند الحاجة لمد العصبونات بالطاقة في حالات هبوط مستوى السكر في الدم. تُساهم الخلايا النجمية في إزالة الشحنات الكهربائية الزائدة في السائل خارج العصبونات للمحافظة على المُحيط الأيوني (الكهربائي) المُناسب لعمل العصبونات على أكمل وجه في نقل الإشارات العصبية. و لها دور مع الخلايا الدبقية الصغيرة في إفراز مواد مُحفزة لنمو العصبونات بعد تلفها (مثال- بعد السكتة الدماغية – Stroke).
      2) الخلايا الدبقية قليلة التغصنات (التشعبات) Oligodendrocytes:
      تعمل هذه الخلايا على تكوين الطبقة العازلة المحيطة بالعصبونات في الجهاز العصبي المركزي Central Nervous System , و التي تُسمى بصفائح مايلين Myelin Sheaths , بالطبع هذه الصفائح (الطبقات العازلة) تعزل الشحنات الكهربائية (الإشارات العصبية) التي تنتقل في الأعصاب عن بعضها البعض حتى لا تؤثر شحنة على شحنة أخرى و بالتالي على معناها بالنسبة للمخ الذي يترجم هذه الشحنات إلى أفعال و ردود أفعال. الخلايا الدبقية قليلة التغصنات لا تُحيط بنفسها حول العصبونات , و إنما يصدر منها تشعبات و هذه التشعبات هي التي تلتف حول العصبونات و تكون الطبقات العازلة.

      </IMG>

      3) الخلايا الدبقية الصغيرة Microglia :
      أصغر الخلايا الدبقية حجماً , تعمل كمزيل للخلايا التالفة و الميتة في الجهاز العصبي. هناك أدلة تفيد بأنها مسؤولة كذلك عن تجدد الخلايا التالفة و تُساعد في إرشاد نمو العصبونات (تحديد طريق نمو العصبونات و تشعباتها).

      4) خلايا شوان Schwann Cells :
      هي نظيرة الخلايا الدبقية القليلة التغصنات في الجهاز العصبي المُحيطي Peripheral Nervous System , و المسؤولة عن تكوين الطبقة العازلة (صفائح مايلين) للعصبونات في الجهاز العصبي المُحيطي. و تتكون هذه الخلايا بشكل أساسي من الشحوم Lipids و التي تُعطيها صفتها العازلة للشحنات الكهربائية. تُساعد خلايا شوان على سرعة إنتقال الإشارات العصبية (الشحنات الكهربائية) في العصبونات و كذلك لها دور في نمو العصبونات بعد تلفها. خلايا شوان تُحيط بنفسها إحاطة تامة حول العصبون بخلاف الخلايا الدبقية قليلة التغصنات في الجهاز العصبي المركزي.

      </IMG>



      الـجـهــاز الـعــصـبــي الــمـــركـــزي
      يتكون الجهاز العصبي المركزي في الإنسان من الدماغ Brain و النخاع الشوكي أو الحبل الشوكي Spinal Cord.
      و يتكون الدماغ من :
      1) المخ Cerebrum.
      2) جذع المخ Brainstem , و الذي يتضمن الدماغ الأوسط Midbrain و الجسر Pons و النُخاع المستطيل Medulla Oblongata.
      3) المُخيخ Cerebellum.

      </IMG>

      في المخ تكون أجسام العصبونات مُتركزة في الطبقة الخارجية (قشرة المخ) Cerebral Cortex و يكون لونها رمادياً و لهذا تُسمى المادة الرمادية Grey Matter و محاور العصبونات موجودة في الداخل و يكون لونها أبيضاً و لهذا تُسمى المادة البيضاء White Matter , و في المادة البيضاء يوجد تجمعات لأجسام عصبونات و هذه التجمعات تُسمى نواة Nucleus أو عُقدة Ganglion. في الحبل الشوكي يكون العكس المادة البيضاء (محاور العصبونات) في الخارج و المادة الرمادية (أجسام العصبونات) في الداخل.


      يقسم الشق الطولاني الإنسي (الداخلي) Medial Longitudinal Fissure المخ إلى نصفين غير مُنفصلين تماماً عن بعضهما البعض , و هما نصف الكُرة المخي الأيمن Right Cerebral Hemisphere و نصف الكُرة المخي الأيسر Left Cerebral Hemisphere. و نصف الكُرة الأيمن يتحكم بالجانب الأيسر من الجسم و بالعكس نصف الكُرة الأيسر يتحكم بالجانب الأيمن من الجسم , و أحدهما يكون نصف الكُرة المُخي المُسيطر Dominant Cerebral Hemisphere , فالأشخاص الذين يستعملون اليد اليمنى يكون نصف الكُرة المخي الأيسر هو المُسيطر عندهم و الأشخاص الذين يستعملون اليد اليسرى يكون نصف الكُرة المخي الأيمن هو المُسيطر عندهم.و بما أن أغلب الناس يستخدمون اليد اليمنى فإن الغالب أن يكون نصف الكُرة المخي الأيسر هو المُسيطر.
      تتجعد المادة الرمادية في المخ على شكل تلافيف Gyri و مُفرده تلفيف Gyrus , و هذا لزيادة مساحة سطح المُخ و بين التلاليف يوجد شقوق و هذه الشقوق لها أسماء و مهمة في معرفة التلافيف المختلفة من المخ و سوف نذكر التلاليف و الشقوق المهمة منها و وظائفها.
      و ينقسم كل من نصف الكرة المخي في السطح الخارجي إلى أربعة (4) فصوص , و هما :

      1. الفص الجبهي Frontal Lobe , و هو مسؤول عن التحكم بالعواطف و الإنفعالات في الإنسان و شخصيته , و كذلك مهم لتعلم و ممارسة المهارات الحسية الحركية المُعقدة , فالأشخاص الذين لديهم تلف في هذا الفص لا يُقدّرون المواقف الإجتماعية و كيفية التصرف الملائم لهذه المواقف و لا يتحكمون بعواطفه فتراهم يضحكون تارة و يبكون تارة و أي شيء يخطر على بالهم يقومون به دون تقييمه ما إذا كان فعل مُناسب في هذا الموقف أم لا. كذلك يحتوي التلفيف الجبهي السُفلي في الجزء الخلفي منه في نصف الكرة المُخي المُسيطر على منطقة بروكاس Broca's Area و هي المنطقة المسؤولة عن التكلم و تلفها يؤدي إلى الحُبسة الحركية Motor Aphasia حيث أن الشخص المُصاب يعرف ما يريد أن يقوله و لكنه لا يستطيع أن يتكلم أو يكون كلامه بطيء و غير مفهوم بالرغم من عدم وجود شلل في عضلات اللسان و الحلق و الحنجرة. التلفيف أمام الشق المركزي Precentral Gyrus و جدار الشق المركزي Central Sulcus الأمامي يحتويان على القشرة الحركية Motor Cortex المسؤولة عن حركة العضلات الإرادية في الجانب المُعاكس من الجسم , أي القشرة الحركية في نصف الكرة المخي الأيمن مسؤولة عن حركة عضلات الجانب الأيسر من الجسم و بالعكس القشرة الحركية في نصف الكرة المخي الأيسر مسؤولة عن حركة عضلات الجانب الأيمن من الجسم , و تلف هذه المنطقة يؤدي إلى شلل في الجانب المُعاكس من الجسم. في القشرة الحركية تكون أعضاء الجسم ممثلة بالمقلوب , أي الجزء السُفلي من القشرة الحركية يتحكم في اللسان و الحنجرة و من ثم الوجه و هكذا و في الأعلى تكون منطقة التحكم بعضلات القدم.
      2. الفص الجداري Parietal Lobe و يحتوي على التلفيف خلف المركزي Postcentral Gyrus و هذا التلفيف مع الجدار الخلفي للشق المركزي يحتويان على القشرة الحسيّة Sensory Cortex المسؤولة عن الإحساس في الجانب المُعاكس من الجسم.و تلف هذه المنطقة يؤدي إلى فقد الإحساس في الجانب المُعاكس من الجسم و تكون أعضاء الجسم ممثلة بالمقلوب كما هو في القشرة الحركية.
      3. الفص الصدغي Temporal Lobe و يحتوي التلفيف الصدغي العلوي Superior Temporal Gyrus على مناطق السمع و كذلك يحتوي على التلفيف الهامشي الفوقي Supramarginal Gyrus و التلفيف الزاوي Marginal Gyrus و هما يحتويان على الذاكرة الخاصة بالكلمات المقروءة و المكتوبة و تلف هذه المنطقة يؤدي إلى خلل القراءة (صعوبة القراءة و تعلمها) Dyslexia.
      4. الفص القذّالي Occipital Lobe , يقع في مؤخرة المخ و يحتوي على مركز الإبصار و تلف المنطقة يؤدي إلى العمى.

      </IMG>

      كما ذكرنا سابقاً فإن نصفي المخ ليسا مفصولين عن بعضهما تماماً ,يمكن القول بأنهم مفصولان عن بعضهما في الجزء العلوي , ففي السطح الداخلي يتصلان مع بعضهما البعض بواسطة الجسم الثفني Corpus Callosum و هو عبارة عن ألياف عصبية (محاور عصبونات) توصل بين مناطق متشابهة في نصفي المخ. و فوقه يكون التلفيف الحِزامي Cingulate Gyrus و هو جزء من الجهاز الحُوفي Limbic system و الذي يتحكم في العواطف و الأحاسيس لدى الإنسان. تحت الجسم الثفني يكون البطين الجانبي (الوحشي) Lateral Ventricle , و يوجد بُطينان, و احد أيمن و آخر أيسر و يتصل كل منهما بالبطين الثالث Third Ventricle بواسطة الثُقبة وسط (بين)البُطينات Interventricular Foramen أو ثُقبة مونرو Foramina of Munro و يتصل البُطين الثالث بالبطين الرابع Fourth Ventricle الذي يقع في جذع الدماغ بواسطة مَسال سيلفيوس Aqueduct of Sylvius الذي يعبر خلال الدماغ الأوسط. و بعدها يتصل البطين الرابع بالقناة المركزية Central Canal في الحبل الشوكي و هذه الأربعة بُطينات و القناة المركزية تحتوي على السائل المُخي الشوكي (أو النُخاعي) CerebroSpinal Fluid.

      </IMG>

      رسم لسطح الدماغ الداخلي , المنطقة الخضراء هي إمتداد للقشرة الحركية و الصفراء إمتداد للقشرة الحسية , المنطقة بالتركواز هي مركز الإبصار في الفص القذالي و المنطقة الحمراء هي مركز الإبصار الدقيق.

      الدماغ الأوسط Midbrain و الجسر Pons و النُخاع المُستطيل Medulla Oblongata يكونون جذع الدماغ Brainstem. و يقع الدماغ الأوسط فوق الجسر و الجسر فوق النُخاع المُستطيل و الذي يكون مُتصلاً بالحبل الشوكي و خلفهم يقع المُخيخ Cerebellum , و يتصل المُخيخ بجذع الدماغ عن طريق السويقة المُخيخية العلوية Superior Cerebellar Peduncle و السويقة المُخيخية السُفلى Inferior Cerebellar Peduncle. يوجد في الدماغ الأوسط مراكز ردة الفعل البصري , مثال ذلك عندما تلمس يداك شيء أو يلفت نظرك شيء و تُريد أن تراه أو تتفحصه عن قرب فإنك تلتفت نحوه و تركز بصرك عليه أو تقربه منك و هكذا. و كذلك يحتوي الدماغ الأوسط على مراكز ردة الفعل السمعي , مثال ذلك تسمع صوتاً ما فتلتفت نحو مصدر الصوت لترى ما هو. و يحتوي الدماغ الأوسط على نواة للأعصاب القحفية الثالث و الربع و الخامس.

      </IMG>


      الجسر يحتوي على نواة للأعصاب القحفية الخامس و السادس و السابع و الثامن كذلك , و النُخاع المستطيل يحتوي على نواة للأعصاب القحفية التاسع و العاشر و الحادي عشر و الثاني عشر. و الأعصاب القحفية Cranial Nerves تُشكل جزء من الجهاز العصبي المُحيطي Peripheral Nervous System و سوف نذكر أسمائها بالترتيب التسلسلي لها ووظيفتها :

      1. العصب الشمي Olfactory Nerve المسؤول عن حاسة الشم لدى الإنسان.
      2. العصب البصري Optic Nerve المسؤول عن الإبصار لدى الإنسان.
      3. العصب المُحرك للعين Oculomotor Nerve و يُغذي عضلات العين الخارجية المسؤولة عن حركة العين كلها ما عدا العضلة المستقيمة الوحشية و العضلة المائلة العلوية. و يحمل معه ألياف عصبية ودية Sympathetic Fibers مسؤولة عن ردة فعل العين للضوء (المُنعكس الضيائي) Light reflex و كذلك مُنعكس التكيف Accommodation Reflex مثال ذلك تكيف العين للقراءة عن قرب.
      4. العصب البكري Trochlear Nerve, يُغذي العضلة المائلة العلوية للعين.
      5. العصب الثُلاثي التوائم Trigeminal Nerve , عصب حسي للوجه (الإحساس) و فروة الرأس و كذلك يحمل ألياف حركية لعضلات المضغ.
      6. العصب المُبعد Abducens Nerve و يُغذي العضلة المستقيمة الوحشية للعين.
      7. العصب الوجهي Facial Nerve , و يُغذي العضلات السطحية للوجه (عضلات التعبير مثل الإبتسام و العبوس) و يحمل ألياف حسيه للألم و الحرارة من الأذن و كذلك ألياف حسيه للتذوق في الثلثين الأماميين من اللسان و ألياف لاودية Parasympathetic Fibers للغدد اللعابية.
      8. العصب الدهليزي القوقعي Vestibulcochlear Nerve , العصب المسؤول عن السمع و التوازن عند الإنسان.
      9. العصب اللساني البلعومي Glossopharyngeal Nerve , يحمل ألياف حسية من الثلث الأخير من اللسان و ألياف لاودية للغدد اللعابية و ألياف حركية لعضلات البلعوم.
      10. العصب المُبهم Vagus Nerve و يحمل ألياف لاودية Parasympathetic Fibers لأعضاء الصدر و الجهاز الهضمي و القلب , مثال تحفيز العصب المُبهم يُقلل من سرعة ضربات القلب و يزيد من حركة الأمعاء. و كذلك يحمل ألياف حركية لعضلات الحلق و البلعوم و الحنجرة.
      11. العصب الإضافي Accessory Nerve و يُغذي عضلات الحنجرة و البلعوم مع العصب المُبهم و فرع منه يُغذي عضلات إرادية في الرقبة.
      12. العصب تحت اللسان Hypoglossal Nerve و هو العصب المُحرك للسان أي يُغذي عضلات اللسان.

      </IMG>

      رسم توضيحي للسطح السُفلي للدماغ يبين الأعصاب القحفية و إتصالها بالدماغ , و هي مبينة حسب أرقامها التسلسلية.

      المُخيخ يُنظم حركات العضلات لتكون مُتناغمة و كذلك التوازن عند الإنسان حيث أنه مسؤول عن الإحساس بوضع الجسم في الفضاء , فإذا كان لدى شخص تلف في المخيخ فإنه يترنح أثناء المشي و لا يستطيع أن يسير في مسار مستقيم و كذلك ترتجف يداه عندما يريد أن يلتقط شيء ما , و كذلك كلامه يكون بطيء و غير واضح و إرتجالي.
      الحبل الشوكي Spinal Cord يبدأ بعد النخاع المستطيل و يمتد للأسفل في القناة الفقارية Vertebral Canal في العمود الفقاري Vertebral Column إلى الفقرة القطنية الثانية و بعدها ينتهي على شكل ذنب الفرس Cauda Equina. و المادة الرمادية في الحبل الشوكي تكون على شكل حرف H و الذراع الأمامي يُسمى القرن الأمامي Anterior Horn و الخلفي القرن الخلفي Posterior Horn و على الجانب القرن الجانبي (الوحشي) Lateral Horn و المادة الرمادية تتكون من أجسام العصبونات , و القرن الأمامي ينشأ منه الجذر الحركي Motor Root و منه الأعصاب الحركية للعضلات الإرادية , و القرن الخلفي حسي و تدخل الأعصاب الحسية الآتية من أعضاء مختلفة من الجسم القرن الخلفي عن طريق الجذر الحسي Sensory Root و تجري القناة المركزية في وسط المادة الرمادية. المادة البيضاء و التي تتكون من محاور العصبونات تُحيط بالمادة الرمادية في الحبل الشوكي و هي عبارة عن ألياف عصبية صاعدة , مثل السبيل الشوكي المُخيخي Spinocerebellar Tract و الذي يحمل معلومات حسية وضعية للمخيخ حتى يستطيع الشخص من التوازن و تعديل وضعه , و مثال آخر السبيل الشوكي السريري Spinothalamic Tract و الذي يحمل الإحساس الحراري للسرير (أو المهاد) Thalamus في المخ حتى يتمكن الجسم من تنظيم حرارته. و ألياف عصبية هابطة مثل السبيل القشري الشوكي Corticospinal Tract و الذي يحمل الأوامر من القشرة الحركية إلى القرن الأمامي و منه للأعصاب الحركية عن طريق الجذر الحركي لكي يقوم الجسم بالحركة المطلوبة منه حسب الموقف.

      </IMG>




      تخرج الأعصاب الحركية من الحبل الشوكي على شكل أزواج , أي واحد من يمين و آخر من يسار الجهة الأمامية للحبل الشوكي, و تدخل الأعصاب الحسية كذلك في جانبي الحبل الشوكي من الخلف واحد من اليمين و الآخر من اليسار , أي زوج حركي و زوج حسي. و هذا هو الحال على طول الحبل الشوكي حتى يُغذي كل أعضاء الجسم و كذلك ينقل منها المعلومات للدماغ. و المناطق التي يخرج منها الأعصاب في الحبل الشوكي تُسمى المناطق الشوكية (النُخاعية) Spinal Segments , تُسمى هذه المناطق حسب الفقرة في العمود الفقاري و يوجد 31 منطقة شوكية مُقسمة كالآتي :
      • 8 مناطق عُنقية (في الرقبة) Cervical Segments (C1,C2,C3,C4,C5,C6,C7,C8).
      • 12 منطقة صدرية Thoracic Segments (T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12).
      • 5 مناطق قطنية Lumbar Segments (L1,L2,L3,L4,L5).
      • 5 مناطق عجزية Sacral Segments (S1,S2,S3,S4,S5).
      • 1 منطقة عُصعصية Coccygeal Segment.

        و هذه الأرقام هي نفسها عدد الأعصاب الشوكية (النخاعية) Spinal Nerves التي تنشأ من الحبل الشوكي و تحمل نفس تسمية المنطقة التي تنشأ منها , مثال , العصب الشوكي الصدري الأول T1 Spinal Nerve ينشأ من المنطقة الشوكية الصدرية الأولى T1 Spinal Segment.

      </IMG>

      رسم توضيحي يبين االمناطق النخاعية (الشوكية) و كذلك الأعصاب الشوكية التي تنشأ منها .

      يُغلف الجهاز العصبي المركزي 3 أغشية و هي من الداخل للخارج :
      1)الأم الحنون Pia Matter.
      2) الأم العنكبوتية Arachnoid Matter.
      3) الأم الجافية Dura Matter.


      الــجـــهـــاز الــعــصـــبــي الــمُــحــيــطـــي

      يتكون الجهاز العصبي المُحيطي من :

      1) الأعصاب المُحيطية الحركية Peripheral Motor Nerves و التي تنشأ من الحبل الشوكي و تُغذي العضلات الإرادية في الجسم.
      2) الأعصاب المُحيطية الحسية Peripheral Sensory Nerves و التي تحمل الإحساس بجميع أنواعه من ألم و ضغط و لمس و حرارة و الإحاسيس العميقة و الإحساس باموضع للدماغ عن طريق الحبل الشوكي.
      3) الأعصاب القحفية Cranial Nerves و قد ذكرناها سابقاً.
      4) الجهاز العصبي المُستقل Autonomous Nervous System الذي يُغذي العضلات اللاإرادية مثل عضلة القلب و الرئتين و الجهاز الهضمي و كذلك الغدد الصماء و جدار الأوعية الدموية .و يتألف من الجهاز العصبي الودي Sympathetic Nervous System و الجهاز العصبي اللاودي Parasympathetic Nervous System.
      الجهاز العصبي الودي ينشأ من القرن الجانبي للحبل الشوكي ,و ألياف ما قبل العُقدة الودية Preganglionic Sympathetic Fibers تخرج ابتداءً من القطعة النُخاعية الصدرية الأولى T1 إلى القطعة النُخاعية القطنية الثانية L2 , و بعد خروجها تكون عُقد على جانبي العمود الفقاري و هذه السلسلة من العقد تُسمى بالسلسلة الودية Sympathetic Chain و من هذه السلسلة تنشأ ألياف ما بعد العُقدة الودية Postganglionic Sympathetic Fibers التي تُغذي الجسم بأكمله بألياف الجهاز العصبي الودي. و عادة يوجد 11 عُقدة صدرية Thoracic Ganglion و 4 قطنية Lumbar Ganglion و 4 عجزية Sacral Ganglion في كل من السلسلتين و يوجد في الرقبة 3 عُقد ودية.
      و خير مثال على عمل الجهاز الودي هي الحالة التي يحس بها الإنسان عند مواجهة الخطر , مثال ذلك مُصادفة أسد في الغابة , تتسارع ضربات قلبك و تتسع حدقة عينك و يقف شعر بدنك و تتوسع القصبات الهوائية و الأوعية الدموية في العضلات و تحس بأنك تستطيع أن تسبق الحصان في الجري و تتضيق الأوعية الدموية في الجلد فتحس بالبرودة و يزيد التعرق و يتقلص صمام المثانة البولية, و تنشأ ألياف الجهاز العصبي الودي من القرن الوحشي في الحبل الشوكي.
      أما عمل الجهاز العصبي اللاودي يؤدي إلى التقليل من ضربات القلب و زيادة إفراز الغدد اللعابية و زيادة حركة الأمعاء و توسع الأوعية الدموية في الجلد و إرتخاء صمام المثانة البولية و تضيق حدقة العين و تحرك العينين للداخل (لوضوح الرؤية القريبة). و تنشأ ألياف هذا الجهاز من القطع النُخاعية العجزية Sacral Segments الثانية و الثالثة و الرابعة من الحبل الشوكي
      ( S2,S3,S4) و كذلك تكون محمولة في العصب القحفي الثالث و السابع و التاسع و العاشر (راجع الأعصاب القحفية في الأعلى).

      </IMG>

      رسم توضيحي يبين الجهاز العصبي المُستقل و أليافه قبل العُقدة و بعدها

      .............................................................................................................................
      الجهاز البولى وعمله

      لكل إنسان كليتنان Kidney (عدد 2 من الكلى ) يُمنى و يُسرى , و الكلى تقع في الجزء الخلفي من البطن في حيز (فضاء) يُسمى بحيز ما وراء البيروتوان (الصِفاق) Retroperitoneal space مُقابل الفقرة الثانية عشرة الصدرية ( Thoracic Vertebra 12 ) و الفقرات القطنية الأولى و الثانية و الثالثة ( Lumbar Vertebrae 1 ,2 , 3 ) من العمود الفقري.
      و من الخلف يحيط بالجزء العلوي من الكليتين الأضلاع العاشر و الحادي عشر و الثاني عشر من القفص الصدري
      ( Thoracic Ribs 10 , 11 , 12 ) . و تأخذ الكلية شكل حبة اللوبيا و يكون إتجاه أعلى الكلوة نحو الداخل (أي نحو العمود الفقري).
      الكلوة اليُسرى أعلى من الكلوة اليُمنى بنصف (In 1 /2) بوصة أي حوالي ( Cm 11/ 2 ) سنتيميتر , و ذلك لوجود الكبد في الناحية اليمنى من البطن حيث تدفع الكلوة اليُمنى إلى الأسفل قليلاً.

      </IMG>

      يقع فوق كل من الكليتين اليمنى و اليسرى غدة صماء تُسمى بالغدة الكظرية Adrenal Gland , و أهم الهرمونات التي تفرزها الغدة الكظرية هي الكورتيزول Cortisol و هرمون الألدستيرون Aldesterone و هرمون الأدرينالين Adrenaline و هرمون النورأدرينالين NorAdrenaline و هرمونات جنسية ضعيفة Androgens.

      </IMG>

      يبلغ طول الكلوة من القطب العلوي إلى القطب السفلي حوالي (Cm 12 ) سنتيميتر , و عرضها حوالي (Cm 6 ) , و سمكها حوالي (Cm 3 ) سنتيميتر , و يبلغ وزن الكلوة في الذكور البالغين من ( 125 gm ) إلى ( 170 gm ) جرام , و في الإناث البالغات من ( 115 gm ) إلى ( 155 gm ) جرام .
      يدخل (يروي) كل من الكليتين اليُمنى و اليُسرى شريان يُسمى بالشريان الكلوي Renal Artery شريان أيمن و شريان أيسر , و الشريان الكلوي يتفرع من الشريان الأبهر في البطن Abdominal Aorat و يخرج من كل كلوة وريد كلوي Renal Vein و الحالب Ureter و الحالب عبارة عن أنبوبة تصل ما بين الكلوة و المثانة البولية.
      و تنقسم الكلوة إلى جزء خارجي و هو قشرة الكلوة Renal (Kidney) Cortex و جزء داخلي و هو لُب الكلوة Renal (Kidney) Medulla.
      الوحدة الفاعلة و التي تتكون الكلوة منها أصلاً هي النفرون Nephron , و يبلغ عددها من 300,000 إلى أكثر من المليون (سوف نشرح النفرون لاحقاً) , و تتجمع هذه النفرونات لتُشكل أهرام الكلوة Renal (Kidney) Pyramids و هي عبارة عن أهرام منكوسة حيث تكون قمتها مُتجهة صوب حوض الكلوة (مركز الكلوة) , و يمكن إعتبار هذه الأهرام هي الوحدة الفاعلة الكبيرة في الكلوة , و تصب في الكؤوس الثانوية Minor Calices و التي تتحد لتكون الكؤوس الرئيسية Major Calices , التي بدورها تتحد لتكون حوض الكلوة Renal (Kidney) Pelvis , و حوض الكلوة يُشكل الحالب Ureter الذي يصل الكلوة بالمثانة البولية. و تُعتبر هذه الكؤوس مجامع لنتاج ترشيح الدم من خلال النفرونات و الذي يُشكل البول Urine لتصب في حوض الكلوة و عبر الحالب إلى المثانة البولية ليطرح خارج الجسم.

      </IMG>


      الـنـفــرون تسـلـسـلـيـاُ يـتـكـون مـن :

      1. الكُبيبة الكلوية Glomerulus و هي عبارة عن حُزمة من الشعيرات الدموية و التي تتكون من الشُرين الوارد Afferent Arteriole (الشُرينات الواردة تتكون من "تفرعات" إنقسام الشريان الكلوي الذي يدخل الكلوة) , تتحد الشعيرات عندما تخرج من الكبيبة لتكون الشُرين الصادر Efferent Arteriole , و الشُرينات الصادرة تتحد لتكون الوريد الكلوي الذي يخرج من الكلية ليصب في الوريد الأجوف السُفلي Inferior Vena Cava في البطن و منه ينتقل الدم إلى القلب.

      2. كبسولة بومان Bowman's Capsule , عبارة عن خلايا مُتخصصة تُحيط بالكُبيبة و تسمح بترشيح الماء و مواد أخرى من الدم خلالها ما عدا كريات الدم الحمراء و البيضاء و الصفيحات و جزيئات البروتين كبيرة الحجم.

      3. الأنبوب الملتوي الداني (القريب) Proximal Convuluated Tubule من كبسولة بومان و هذه الأنابيب تمتص بعض المواد مثل الجلوكوز و البروتينات صغيرة الحجم التي ترشحت خلال كبسولة بومان , و كذلك تفرز بعض المواد مثل الكلوريد و ذرات الهيدروجين و البيكربونات حسب حاجة الجسم.

      4. عروة هنلي Henle's Loop , يتم خلال هذه العروة إمتصاص و إفراز الأملاح المختلفة مثل الصوديوم و الكلوريد و ذرات الهيدروجين حسب حاجة الجسم. و يتكون من جزء نحيف هابط و جزء سميك صاعد.

      5. الأنبوب الملتوي القاصي (البعيد) Distal Convuluated Tubule , هذه الأنابيب لها دور هام في إمتصاص و إفراز البوتاسيوم تحت تأثير هرمون الألدوستيرون و تصب في في الأنبوب (الأنابيب) الجامعة Collecting Tubules.

      6. الأنابيب الجامعة Collecting Tubules تجمع نتاج ترشيح الدم (البول) خلال النفرونات و تنتقل خلال قشرة الكلوة و لُبها لتصب في الكؤوس الثانوية عبر حُليمات. الأنابيب الجامعة لها دور أساسي في إمتصاص الماء من البول لزيادة تركيزة تحت تأثير الهرمون المضاد للإدرار Anti-Diuretic Hormone ADH و الذي يُفرز من الغدة النخامية Pituitary Gland الصماء في الرأس.
      الكبيبة و كبسولة بومان و الجزء الأكبر من الأنبوب الملتوي القريب و الجزء العلوي للذراع الصاعد من عروة هنلي و الأنبوب الملتوي البعيد و جزء من الأنابيب الجامعة تقع في قشرة الكلوة و الذراع الهابط من عروة هنلي و الجزء الكبير من الأنابيب الجامعة تقع في لب الكلوة.


      </IMG>



      وظــائــف الــكــلــوة :

      • تخليص الجسم من المواد السامة و أهمها مُشتقات الأمونيوم (اليوريا) , و كذلك الأدوية و السموم.

      • الحفاظ على تركيبة السوائل خارج الخلايا Extracellular Fluids من حيث تركيز الأملاح و الحجم (الماء) , و ذلك عن طريق إمتصاص أو إفراز هذه الأملاح حسب تركيزها في الدم الذي يمر خلال الكُبيبات و كذلك إمتصاص الماء أو طرحه خارج الجسم عن طريق الأنابيب الجامعة.

      • تنظيم ضغط الدم عن طريق زيادة أو نقصان إفراز هرمون الرينين Renin من جهاز قُرب الكُبيبة
        Juxta - Glomerullar Apparatus , و الذي عبارة عن خلايا مُتخصصة في الأنبوب الملتوي البعيد تقع قرب الكُبيبة الكلوية بحيث تجس ضغط الدم بكمية الدم الذي يصل الكلوة (التروية), حيث أنه أي حالة تسبب هبوط في ضغط الدم (كمثال, في حالة الصدمة أو النزف الشديد أو التجفاف) تزيد الكلوة من إفراز الرينين الذ يعمل على مواد أخرى في الدم من شأنها في النهاية تقلص الأوعية الدموية لرفع ضغط الدم.

      • الحفاظ على توازن الحمض-القلوي للدم Blood Acid-Base Balance و ذلك عن طريق زيادة إفراز ذرات (شوارد) الهيدروجين +H و زيادة إمتصاص البيكربونات -HCO3 عند زيادة حموضة الدم و العكس عند زيادة قلوية الدم.

      • إفراز هرمون إريثروبيوتين Erythropoeitin و الذي يلعب دوراً هاماً في تحريض نخاع (نقي) العظم على تصنيع كريات الدم الحمراء و نقصه يسبب فقر دم.

      • تحويل فيتامين دال Vitamin D إلى صورته الفعاله و بدون هذا التحويل لا يعمل و هذا يسبب مرض الكُساح Rickets.

      ما هو مُعدل الترشيح الكُبيبي Glomerular Filtration rate "GFR"؟

      مُعدل الترشيح الكبيبي هو كمية االرُشاحة المُستدقة (مواد صغيرة الحجم) Ultrafiltrates التي تترشح من الدم إلى جوف الأنابيب الكلوية في فترة زمنية محددة , و المُعدل يُستخدم في الطب كقياس لعمل الكلوة. و يتم عن طريق قياس اليوريا Urea و الكرياتينين Creatinine في الدم و في بول تم تجميعه خلال 24 ساعة , و يُقاس بالمليليتر في كل دقيقة ml / min , معدل الترشيح يقل في حالات قصور الكلوة (الفشل الكلوي).
      المُعدل الطبيعي للذكور هو 85 - 125 مليليتر / الدقيقة (ml/min).
      المُعدل الطبيعي للإناث هو 75 - 115 مليليتر / الدقيقة (ml/min).
      يبلغ طول الحالب في الإنسان حوالي (Cm 25) سنتيميتر , و يقع نصفه في البطن و النصف الآخر في الحوض . و الحالب يصل حوض الكلوة بالمثانة البولية و يدخل في المثانة البولية بشكل منحرف و يجري في جدارها قبل أن يفتح داخل جوفها و هذا يكون بمثابة صمام و خاصة عند تقلص عضلة المثانة بحيث تغلق فتحة الحالب كلياً لمنع إرتجاع البول في الحالب.


      المثانة البولية Urinary Bladder عبارة عن مخزن للبول , و تقع في الجزء الأمامي من الحوض و شكلها شكل مقدمة السفينة لو قطعت , لها أربعة أسطح و أربعة زوايا. الزاويتان العلويتان الخلفيتان , اليمنى يدخل فيها الحالب الأيمن و اليُسرى الحالب الأيسر. تبلغ سعة المثانة البولية من (ml "cc" 200 ) مليليتر إلى (ml "cc" 300 ) مليليتر.
      </IMG>
      الزاوية السُفلية يخرج منها الإحليل Urethra و الذي يبلغ طوله في الأنثى (Cm 4) سنتيميتر و في الذكر (Cm 20) سنتيميتر , الإحليل يفتح خارج الجسم في الأنثى و الذكر و منه يخرج البول خارج الجسم.

      </IMG>

      رحــلــة الــبــول
      عندما يتجمع البول في الكؤوس , تتقلص العضلات الناعمة (الملساء) في جدرانها Smooth Muscles فتدفع البول إلى حوض الكلوة و التي تتقلص العضلات الناعمة في جداره لدفع البول إلى الحالب الذي عندما ينتفخ من وصول البول فيه تتقلص عضلاته الناعمة في جداره تسلسلياً من الأعلى إلى الأسفل لدفع البول إلى المثانة البولية.
      عندما يصل حجم البول في المثانة البولية من 200 إلى 300 مليليتر , تنتفخ المثانة و تُشد العصبونات في جدارها مما يُعطي الشعور بالحاجة للتبول و هذا يؤدي إلى تقلص عضلة المثانة و إرتخاء عضلة صمام الإحليل لتدفع البول إلى خارج الجسم عبر الإحليل.


      .............................................................................................................................
      الشرايين التاجية
      coronary Arteries

      سُميت شرايين القلب بالشرايين التاجية Coronary Arteries لأنها تُطوق القلب كالتاج. يُغذي القلب شريانان تاجيان هما الشريان التاجي الأيمن Right Coronary Arteries و الشريان التاجي الأيسر Left Coronary Arteries .
      الشريان التاجي الأيمن و الشريان التاجي الأيسر يُشكلان دائرة شريانية Arterial Circle تقع في الأخدود الاُذيني البُطيني (التاجي) AtrioVentricular ( Coronary ) Groove للقلب و تُطوقه , و يتفرع من هذه الدائرة الشريانية عروة (حلقة) شريانية Arterial Loop تجري في الأخدود وسط (بين) البطينين الأمامي Anterior InterVentricular Groove و الأخدود وسط (بين)البطينين السُفلي Inferior InterVentricular Groove.


      الشريان الأبهر (الجزء الصاعد) Aortic Artery بعد منشأه من البطين الأيسر Left Ventricle يتورم ليُشكل 3 إنتفاخات تُسمى بالجيوب الأبهريية Aortic Sinuses , واحد أمامي Anterior و إثنان خلفي Posterior أيمن و أيسر.
      الشريان التاجي الأيمن ينشأ من الجيب الأبهري الأمامي Anterior Aortic Sinus و الشريان التاجي الأيسر ينشأ من الجيب الأبهري الخلفي الأيسر Left Posterior Aortic Sinus.

      </IMG>

      بعد منشأهما من الجيوب الأبهرية , يلتف الشريانان التاجيان بإتجاه الأمام و يجريان على جانبي جذر الجذع الرئوي Pulmonary Trunk (الجذع الرئوي ينشأ من البطين الأيمن Right Ventricleو ينشأ عنه الشريانان الرئويان Pulmonary Arteries الأيمن و الأيسر).



      </IMG>

      رسم توضيحي يُبين الشرايين التاجية على سطح القلب المواجه للقفص الصدري الأمامي.



      الشريان التاجي الأيمن Right Coronary Arteries بعد منشأه يجري بين جذر الجذع الرئوي و الاُذينةُ اليمنى Right Auricle حتى يصل الأخدود التاجي في السطح الأمامي للقلب و يجري فيه للأسفل و لليمين حتى يصل إلى نقطة لقاء الحد الأيمن Right Border بالحد السُفلي للقلب Inferior Border, هنا يتفرع منه الشريان الهامشي Marginal Artery.
      بعدها يجري الشريان التاجي الأيمن للوراء في الجزء الخلفي من الأخدود التاجي و يتفرع منه الشريان وسط البطينين السُفلي (أو الخلفي) Inferior Interventricular Aretry الذي يهبط بإتجاه الأمام في الأخدود وسط البطينين السُفلي و ينتهي بمُفاغرة الشريان وسط البطينين الأمامي Anterior Interventricular Aretry الذي يتفرع من الشريان التاجي الأيسر , و ينتهي الشريان التاجي الأيمن بمُفاغرة الفرع المُلتف Circumflex Branch من الشريان التاجي الأيسر (يُفاغر "مُفاغرة", تعني إلتصاق و إندماج طرف نهاية وعاء دموي بطرف نهاية وعاء دموي آخر , Anastomosis).


      </IMG>

      رسم توضيحي يُبين الشرايين التاجية على سطح القلب المواجه للحجاب الحاجز.



      الشريان التاجي الأيسر Left Coronary Arteries بعد منشأه يجري بين جذر الجذع الرئوي و الاُذينةُ اليُسرى Left Auricle حتى يصل الطرف العلوي من الأخدود وسط البطينين الأمامي , هنا ينقسم إلى فرعين :

      1- الفرع وسط البطينين InterVentricular Branch , و الذي يُسمى كذلك بالشريان بين البطينين الأمامي Anterior Interventricular Aretry , و يجري في الأخدود وسط البطينين الأمامي بإتجاه الأسفل حتى يصل الحد السُفلي للقلب Inferior Border قريباً من ذروة القلب Apex , عندها يلتف ليصل الأخدود بين البطينين السُفلي و ينتهي بمُفاغرة الشريان وسط البطينين السُفلي.

      2- الفرع المُلتف Circumflex Branch , يجري بإتجاه اليسار في الأخدود التاجي و يلتف حول الحد الأيسر للقلب Left Border و ينتهي بمُفاغرة الشريان التاجي الأيمن.
      الدم الوريدي Venous Blood الراجع من عضلة القلب يجري في أوردة Veins تتبع الشرايين التاجية , معظم الأوردة تصب في الجيب التاجي Coronary Sinus الذي عبارة عن قناة وريدية Venous Channel قصيرة طولها 4 سنتيمتر و واسعة , تقع في الأخدود التاجي و تفتح في الاُذين الأيمن Right Atrium

      .............................................................................................................................


      الدورة الشهرية

      Menstrual Cycle



      الإنسان هو أحد الكائنات الحية التي لديها دورة إنجابية شهرية Monthly Reproductive Cycle و ذلك للتعويض عن فرصة الإخصاب (الحمل) المُنخفضة نسبياً و البالغة 30% . عادة ما تكون مدة هذه الدورة 28 يوم و بإنتظام, و لكن يجب أن نعرف بأن إنتظام هذه الدورة ليس بالضروري للتمتع بصحة جيدة!!


      يُمكن تقسيم الدورة الشهرية حسب الأطوار أو التغيرات التي تطرأ على المبيض, فتكون:
      • <LI style="FONT-SIZE: 9pt; COLOR: navy; FONT-FAMILY: 'Courier New'">الطور الجُريبي Follicular Phase <LI style="FONT-SIZE: 9pt; COLOR: navy; FONT-FAMILY: 'Courier New'">الإباضة (التبويض) Ovulation
      • الطور التال للإباضة Postovulatory Phase أو الطور الأصفري Luteal Phase

      التحكم الهرموني بالدورة الشهرية:

      يتحكم محور تحت المهاد-النُخامي-المبيضي Hypothalamo-Pituitary-Ovarian Axis بتطور و نضوج الجُريب Follicular Maturation في المبايض و الذي ينتج منه البويضة, و الإباضة Ovulation (طرح البويضة من الجُريب). منطقة تحت المهاد Hypothalamus (هايبوثلاماس) في المخ تتحكم بتغيرات الدورة الشهرية, و هذه المنطقة تتأثر بمراكز عليا في المخ Brain Higher Centers مما يؤدي إلى تأثر إنتظام الدورة الشهرية بعوامل مثل القلق و التوتر و الضغط النفسيين.

      منطقة تحت المهاد (الهايبوثلاماس) تفرز الهُرْمونُ المُطْلِقُ لمُوَجِّهَةِ الغُدَدِ التَّناسُلِيَّة
      Gonadotrophin-Releasing Hormone "GnRH" و تفرزه في نبضات كل 90 دقيقة تقريباً (أي تفرز الهرمون ثم يتوقف الإفراز و تفرزه مرة أخرى بعد 90 دقيقة و هكذا). يرحل هرمون GnRH عبر الأوعية الدموية الدقيقة في الجَهازُ النَّخامِيُّ البَوَّابيّ Pituitary Portal System ليصل الجزء الأمامي للغدة النخامية Anterior Pituitary و يُحفز الخلايا المُوَجِّهَةٌ للغُدَْدِ التَّناسُلِيَّة Gonadotrophs لكي تُصنّع و تفرز الهُرْمونُ المُنَبِّهُ أو المُحرّض للجُرَيب Follicle-Stimulating Hormone "FSH" و الهُرْمونُ المُلَوتِن Luteinizing Hormone "LH" .


      الهُرْمونُ المُنَبِّهُ أو المُحرّض للجُرَيب FSH يُحفز نضج الجُريب في المبيض أثناء الطور الجُريبي من الدورة الشهرية. و كذلك يعمل مع الهُرْمونُ المُلَوتِن LH على تحفيز الخَلاَيا المُحَبَّبة Granulosa Cells في الجُريبة المِبيضية الناضجة Mature Ovarian Follicle لإنتاج و إفراز الهرمونات الأستيرودية خاصة الأستيروجين Oesterogen .
      الهُرْمونُ المُلَوتِن LH يلعب دور أساسي في الإباضة (طرح البويضة من الجُريبة الناضجة) , حيث أن مستواه يرتفع عالياً في منتصف الدورة الشهرية. كذلك إنتاج البروجيستيرون Progesterone من الجسم الأصفر Corpus Luteum يكون تحت تأثير الهُرْمونُ المُلَوتِن في الطور الأصفري من الدورة الشهرية.

      التغيرات التي تحدث في المبيض نتيجة لتأثير هذه الهرمونات خلال أطوار الدورة الشهرية تكون تحت تأثير آلية التلقيم الإرتجاعي Feedback Mechanism التي تعمل ما بين منطقة تحت المِهاد في المخ و الغدة النخامية و المبيض.

      </IMG>
      رسم توضيحي يُبين التحكم الهرموني في الدورة الشهرية, الأسهم الصاعدة تُمثل آلية
      التلقيم الإرتجاعي سواء كان إيجابي أم سلبي.

      التغيرات التي تحدث في المبيض أثناء الدورة الشهرية:

      1- الطور الجُريبي Follicular Phase

      الأيام 1 - 8 من الدورة

      في أول أيام الدورة الشهرية يكون مستوى FSH و LH عاليين نسبياً, و يحُثان تطور 10 - 20 جُريبة, و لكن عادة واحدة فقط سوف تصل للنضوج التام و تكون الجُريبة المُسيطرة Dominant Follicle و تظهر في منتصف الطور الجُريبي. المستوى المُرتفع نسبياً لهرمون FSH و LH هو من تأثير المستوى المُنخفض لهرمون الأستيروجين و البروجيستيرون من الدورة السابقة (تلقيم إرتجاعي إيجابي Positive Feedback), أثناء و مُباشرة بعد الطمث (الحيض) يكون مستوى الأستيروجين مُنخفض نسبياً و يبدأ بالإرتفاع مع التطور الجُريبي Follicular Development في المبيض.

      الأيام 9 - 14 من الدورة

      مع زيادة حجم الجُريبة تتجمع السوائل بين الخَلاَيا المُحَبَّبة التي تندمج مما ينتج عنه جوف مركزي ممتلأ بالسوائل يُسمى غار الجُريب Antrum Folliculare , هذا الجوف يُحول الجُريبة الأولية
      Primary Follicle إلى جُرَيبُ غراف (الجُرَيباتُ المَبيضِيَّةُ الحُوَيصِلِيَّة) Graafian Follicle , و تحتل الخَلِيَّةُ البَيضِيَّة Oocyte جزء طرفي منه مُحاطة ب 2 - 3 طبقات من الخَلاَيا المُحَبَّبة تُسمى رُكْمَةٌ مَبِيْضِيَّةٌ
      Cumulus Oophorus .
      مع نضوج الجُريبة المِبيضية يزداد إفراز هرمون الأستيروجين خاصة الأستيرادايول Oestradiol من الخَلاَيا المُحَبَّبة و يصل ذروته 18 ساعة قبل الإباضة. مع إرتفاع مستوى الأستيروجين في الدم يتم تثبيط إفراز FSH و LH بآلية التلقيم الإرتجاعي السلبي Negative Feedback Mechanism و ذلك لمنع فرط تحفيز المبايض و نضوج أكثر من جُريبة, و كذلك مادة الأنهيبين Inhibin التي تفرزها الخَلاَيا المُحَبَّبة للغرض نفسه.

      2- الإباضة Ovulation

      اليوم 14 من الدورة

      الإباضة (التبويض) هي عملية طرح البويضة من الجُريبة المِبيضية في المِبيض. يحدث إزدياد سريع في حجم الجُريبة و تبرز من سطح القشرة المِبيضة Ovarian Cortex و من ثم تنفجر مُطلقة الخَلِيَّةُ البَيضِيَّة مع الرُكْمَةٌ المَبِيْضِيَّةٌ المُلتصقة بها. بعض النساء يشعرن بألم عند الإباضة و هذا الألم يسبق إنفجار الجُريبة و يُسمى ميتل شميرز Mittleschmerz . يُعتقد بأن إرتفاع الأستيرادايول يُحفز جيشان LH عند منتصف الدورة Mid-Cycle LH Surge (إرتفاع مُفاجئ في مستواه في الدم) و بدرجة أقل إفراز FSH بآلية التلقيم الإرتجاعي الإيجابي. تحدث الإباضة أثناء 18 ساعة من بدء جيشان LH. قبل الإباضة بقليل ينخفض إنتاج هرمون الأستيرادايول و يزيد إنتاج هرمون البروجيستيرون.

      3- الطور الأصفري Luteual Phase

      الأيام 15 - 28 من الدورة

      ما يتبقى من الجُريبة المِبيضية في المبيض بعد طرح البويضة تنفذ خلاله شعيرات دموية دقيقة Capillaries و أرومات ليفية Fibroblasts , و تتلوتن الخلايا المُحببة في الجُريبة (أي يتغير شكلها و هيئتها لتكون الجسم الأصفر), و هذه الخلايا مع بعضها تُكوّن الجسم الأصفر Corpus Luteum الذي يكون مصدر الهرمونات الأستيرودية الجنسية Sex Steroid Hormones البروجيستيرون و الأستيروجين الرئيسي بعد الإباضة. يرفع الجسم الأصفر مستوى هرمون البروجيستيرون في الدم بشكل ملحوظ و يُسبب إرتفاع ثانوي في مستوى الأستيرادايول. أثناء هذا الطور ينخفض مستوى الهرمونات المُوَجِّهَةِ للغُدَدِ التَّناسُلِيَّة Gonadotrophins و هما FSH و LH و تبقى مُنخفضة حتى يتم تَقَهْقُر الجسم الأصفر الذي يحدث في الأيام
      26 - 28 من الدورة.
      إذا حدث تلقيح للبويضة و انْغِراس (البويضة المُلقَّحة) في جدار الرحم فإن الجسم الأصفر لا يتَقَهْقُر و يستمر في عمله لأنه يكون مُصان بالهرمون مُوَجِّهَةُ الغُدَدِ التّناسُلِيَّةِ المَشيمائِيَّةُ البَشَرِيَّة
      HCG (Human Chorionic Gonadotrophin) التي تفرزه الأَرومَات الغاذِيَة ( الأَدِيْمُ الغَاذي) Trophoblasts و هي الخلايا التي تُثبت المُضغة في جدار الرحم و تمدُها بالغذاء.
      في حال أنه لم يتم تلقيح و غرس البويضة فإن الجسم الأصفر يتَقَهْقُر و يحدث الحيض (نزول دم الدورة الشهرية), و ينخفض مستوى الهرمونات الأستيرودية الجنسية (الأستيرادايول و البروجيستيرون) مما يُسبب إرتفاع في إفراز الهرمونات المُوَجِّهَةِ للغُدَدِ التَّناسُلِيَّة بآلية التلقيم الإرتجاعي الإيجابي و تبدأ الدورة الشهرية التالية.

      </IMG>
      رسم توضيحي يُبين تطور و نضوج الجُريبات في المبيض و الإباضة
      و تكوين الجسم الأصفر أثناء الدورة الشهرية.



      التغيرات التي تحدث في الرحم أثناء الدورة الشهرية:

      بِطانَةُ الرَّحِم Endometrium تتكون من طبقتين, طبقة سطحية Superficial Layer و هي التي تنفصل و تُذرف أثناء الحيض و طبقة قاعدية (أساسية) Basal Layer و التي لا تُذرف في الحيض و إنما تبقى لتُجدد الطبقة السطحية أثناء الدورة الشهرية التالية. نستطيع أن نُقسم التغيرات في الرحم إلى:

      1- الطور التَكاثُرِيّ Proliferative Phase
      أثناء الطور الجُريبي للمبيض تكون بطانة الرحم تحت تأثير هرمون الأستيروجين مما يُسبب تكاثر الغدد في البطانة, و يكون شكلها أنبوبي و مُرتبة بشكل نظامي و مُتوازية.

      </IMG>
      صورة مجهرية لبطانة الرحم في الطور التكاثري.

      2- الطور المُفْرِز Secretory Phase
      بعد الإباضة تكون بطانة الرحم تحت تأثير هرمون البروجيستيرون مما يُحفز إنتاج الإفرازات في غدد بطانة الرحم. و هذا يجعلها مُنتفخة و مُتعرجة.

      </IMG>
      صورة مجهرية لبطانة الرحم في الطور المُفرز.

      3- الطور الحيضي Menstrual Phase
      توقف إفراز الجسم الأصفر في المبيض لهرمون الأستيروجين و البروجيستيرون في نهاية الطور الأصفري للمبيض ينتج عنه تقلص شديد في شُرينات بِطانَةُ الرَّحِم Endometrial Arterioles مما يسبب نَخَرٌ إِقْفارِيّ Ischaemic Necrosis للطبقة السطحية من بطانة الرحم (أي موت الخلايا نتيجة نقص أو توقف جريان الدم لها) و هذا يسبب ذرفها و نزول دم الحيض. تقلص الشُرينات يكون نتيجة للإنتاج المحلي لمواد تُسمى البروستاغلاندين Prostaglandins , و هي كذلك تُسبب زيادة في تقلصات الرحم أثناء الحيض مما قد يُسبب عُسْرُ الطَّمْث Dysmenorrhoea (الآلام التي تشتكي منها بعض النساء أثناء نزول دم الحيض).

      التغيرات التي تحدث في المُخاط الرَقَبِيّ Cervical Mucus في الرحم أثناء الدورة الشهرية:

      في بداية الطور الجُريبي للمبيض يكون المُخاط ثخين و مُتلزج و غير قابل للإختراق بواسطة الحيوانات المنوية. و في أواخر هذا الطور و تحت تأثير مستوى هرمون الأستيروجين المُتزايد تزيد كمية الماء تدريجياً في المُخاط و يُصبح مائي و سهل الإختراق بواسطة الحيوانات المنوية قبل حدوث الإباضة. بعد الإباضة و تحت تأثير هرمون البروجيستيرون من الجسم الأصفر و الذي يضد عمل الأستيروجين , يعود المُخاط الرقبي مرة ثانية ليُصبح ثخين و مُتلزج و غير قابل للإختراق بواسطة الحيوانات المنوية.

      التغير الذي يطرأ على حرارة الجسم

      بعد التبويض يحدُث إرتفاع في درجة حرارة الجسم الأساسية بمعدل 0.5 o C (نصف درجة مئوية) و يستمر هذا الإرتفاع حتى نزول دم الحيض , و يكون من تأثير هرمون البروجيستيرون في الجسم الذي يزيد مستواه بعد الإباضة. إذا وقع الحمل فإن هذا الإرتفاع في درجة حرارة الجسم يستمر طوال فترة الحمل حتى الولادة.

      </IMG>
      رسم توضيحي يُبين التغيرات التي تطرأ أثناء الدورة الشهرية.

      حقائق :
      إذا كانت الدورة الشهرية طويلة, أي أكثر من 28 يوم, فإن الطور الجُريبي تكون مدته هي الأطول و مدة الطور الأصفري (بعد الإباظة) تكون دائماً 14 يوم .



      الـمُـتـوسـط

      الـمـجال من و إلى

      طول الدورة الشهرية

      26 - 28 يوم

      21 - 35 يوم

      عدد أيام نزول دم الحيض

      3 - 4 يوم

      2 - 7 يوم

      كمية الدم المفقودة الطبيعية

      30 - 40 مليليتر

      20 - 80 مليليتر



      ...............................................................
      النسيج الشحمى
      Adipose Tissue


      النّسيج الشّحميّ Adipose Tissue هو الأنسجة المُتخصّصة الّتي تؤدّي دور موقع التخزين الرّئيسيّ للدّهن على شكل ترايجليسيريد Ttriglycerides . النّسيج الشّحميّ يُوجَد في الحيوانات الثّدييّة في شكلين مختلفين :

      1. النّسيج الشّحميّ الأبيض White Adipose Tissue .
      2. النّسيج الشّحميّ البُني Brown Adipose Tissue .


      يُقدّم النّسيج الشّحميّ الأبيض الوظائف التالية:

      1. عزل الحرارة Heat Insulation , يُعتبر النّسيج الشّحميّ الموجود مُباشرة تحت الجلد
        Subcutaneous Adipose Tissue , عازل حرارة مُهم للجسم, لأنه يُوصل (يُسرب) ثُلث الحرارة التي تُسربها الأنسجة الأخرى. مقدار عزل الحرارة يعتمد على سمك هذه الطّبقة الشحمية. على سبيل المثال, شخص بطبقة شحم تحت الجلد بسمك 2 ملّيمتر سيشعر بالراحة في مُحيط درجة حرارته 15 درجة مئوية كشخص بطبقة شحمية سُمكها 1 ملّيمتر في 16 درجة مئوية.
      2. وسادة ميكانيكيّة Mechanical Cushion , حيث يعمل كماص للصدمات Shock Absorber لحماية أعضاء و أنسجة الجسم.
      3. مصدر طاقة Source of Energy هام للجسم.
      4. النّسيج الشّحميّ أيضًا يُحيط بالأعضاء الدّاخليّة (الأحشاء كالكلى) و يكون كماص للصدمات و يحميها من التّصادم ببعضها و يُساعد على تثبيتها في أماكنها.
      5. إنتاج و إفراز هرمون ليبتين Leptin الذي يتحكم بالشهية.

      كالشّكل الرّئيسيّ لتخزين الطّاقة, الشحم يعمل كواقي ضد الخلل الناتج عن عدم تساوي مقدار الطّاقة المأخوذة عن طريق الأكل مع الطاقة المصروفة. إنّها طريقة فعّالة لتخزين الطّاقة الفائضة, لأنه يُخَزَّن بحجم ماء صغير جدًّا. بالتّالي, طاقة أكثر يُمكن أن تُسْتَمَدّ لكلّ جرام من الدّهن ( 9 كالوري لكل 1 جرام) مقارنة مع كلّ جرام كربوهيدرات أو بروتين
      ( 4 كالوري لكل 1 جرام). المرأة العاديّة التي لديها 20 % من جسمها شحوم, يكون لديها طاقة من الدهن (الشحم) تكفيها لتعيش حوالي شهر واحد من دون أكل.
      هناك بعض القيود على استخدام الدهن كوقود, حيث أنه لا يمكن أن تحوّل مُعظم الحيوانات الدهن إلى الكربوهيدرات. الأنسجة الّتي تشتغل في الغالب أنايروبيكالي (يتم التمثيل الغذائي فيها بدون استخدام الأوكسوجين "لا هوائي") Anaerobic (على سبيل المثال كريّات الدم الحمراء) يجب أن تعتمد على الكربوهيدرات (الجلوكوز) للطّاقة و تحتاج لأن تحصل على مخزون كافي متاح من الجلوكوز. بالإضافة لذلك, تحت الظّروف العاديّة المخّ مُعتمد على الجلوكوز للطّاقة و لا يستخدم الأحماض الدّهنيّة. في الظّروف الغريبة الخاصّة بالتّمثيل الغذائيّ, المخّ يمكن أن يستخدم الأجسام الكيتونية ketone Bodies (مُنتج ثانويّ من عمليّة التّمثيل الغذائيّ للدهون) عندما تكون مُتوفرة بكمّيّات عالية. أخيرًا, قد يكون أسهل أيضياً للأنسجة أن تستخدم الجلوكوز للطاقة تحت الظّروف الغذائيّة النّموذجيّة لأن نقل الدّهون الغير قابلة للذوبان خلال الدّم يتطلّب آليّةً معيّنةً.
      النّسيج الشّحميّ البنّيّ الّذي يأخذ لونه من وفرة الأوعية الدموية و خلاياه المليئة جداً بالميتوكوندريا Mitochondria (الميتوكوندريا عبارة عن مصانع الطاقة في الخلايا). يُوجَد النّسيج الشّحميّ البنّيّ في الحيوانات و أهميته تكمن بأنه يُولد الحرارة لتدفئة الحيوان أثناء البيات الشتوي و في الحيوانات حديثة الولادة. لا يوفر النّسيج الشّحميّ البنّيّ أي طاقة للحيوان, أي أنه ليس بمخزن للطاقة و إنما يُولد الحرارة للجسم بآلية تُعرف بتوليد الحرارة بدون الإرتجاف
      Non-Shivering Thermogenesis و حرق السعرات الحرارية الفائضة التي تدخل الجسم عن طريق الأكل بتحويلها إلى حرارة و هذا يُسمى توليد الحرارة بالأكل Diet Induced Thermogenesis , و هذا يحصل لأن الميتوكوندريا في خلايا النّسيج الشّحميّ البنّيّ لديها حاملة معيّنة تسمّى البروتين الغير مُقارن (مُزوج) Uncoupling Protein الّذي ينقل البروتونات (ذرات الهيدروجين) من خارج الخلايا إلى داخلها بدون إنتاج إيه تي بي ATP و الذي هو عبارة عن المُركب الذي يمُد خلايا الجسم بالطاقة.

      تركيب و شكل و نموّ النّسيج الشّحميّ
      Morphology and Development of Adipose Tissue

      في الحيوانات الثّدييّة البالغة, النسيج الشحميّ يتكون من تجمع خلايا مملوءة بالدّهن (دهون ثلاثية "ترايجليسرايد") تُسَمَّى الخلايا الشحمية (أديبوسايت) Adipocytes , مُتماسكة مع بعضها في هيكل من ألياف الكولاجين Collagen . بالإضافة للخلايا الشحمية, النّسيج الشّحميّ يحتوي على خلايا سَدية وعائية Stromal-Vascular Cells متضمّناً خلايا نسيج الأرومات الليفية الضّام Fibroblastic Connective Tissue cells , كرات الدّم البيضاء, خلايا بلعمية Macrophages , و ما قبل الخلايا الشحمية Pre-Adipocytes (و هي عبارة عن خلايا شحمية لم تمتلأ بالدهن بعد) و التي تُساهم في الوحدة البنائيّة.


      يمكن أن تكون قُطيرات الدّهن في النّسيج الشّحميّ وحيدة المسكن (وحيدة) Unilocular و/أو مُتعددة المسكن Multilocular (مُتعددة) . تحتوي الخلايا وحيدة المسكن على قُطيرة دهن Lipid Droplet كبيرة واحدة تدفع نواة الخليّة ضدّ غشاء الخليّة, مما يُعطي الخليّة شكل خاتم (خُتيم) Signet-Ring . الخلايا وحيدة المسكن هي ميزة النّسيج الشّحميّ الأبيض, و تتراوح في الحجم من 25 إلى 200 ميكرون Micron (الميكرون يُساوي جزء من المليون من المتر أي المتر يُساوي مليون ميكرون). و تكون الميتوكوندريا موجودة بشكل سائد في الجزء الأكثر سمكًا لإطار الخلية قرب النّواة. قطرة الدهن الكبيرة داخل الخليّة لا تحتوي على أي عُضيات (تصغير أعضاء) Organelles .
      </IMG>
      صورة مجهرية للنسيج الشحمي الأبيض و رسم توضيحي للخلية الشحمية البيضاء.

      الخلايا الشحمية مُتعددة المسكن نموذجيًّا تتواجد في النّسيج الشّحميّ البنّيّ, و تحتوي على الكثير من قُطيرات الدهن الصغيرة. قد تصل الخليّة في النّسيج الشّحميّ البنّيّ إلى قطر 60 ميكرون و قُطيرة الدّهن داخل الخليّة قد يصل قُطرها إلى 25 ميكرون. إنّ اللون البنّيّ لهذا النسيج يُؤْخَذ من تكوّن الأوعية الدموية الكثيرة و الميتوكوندريا المُتوافرة جدًّا. الميتوكوندريا تختلف في الحجم و قد تكون مُستديرة, بيضاويّة, أو خيطية في الشكل.


      </IMG>
      صورة مجهرية للنسيج الشحمي البني و رسم توضيحي للخلية الشحمية البنية.

      تقريباً 60 إلى 85 % من وزن النّسيج الشّحميّ الأبيض هو دهن, تُكوّن الدهون الثلاثية ال90-99 % . توجد كمّيّات صغيرة من الأحماض الدّهنيّة الحرّة Free Fatty Acids , دهون ثُنائية Diglyceride , الكولسترول , دهون فوسفاتية Phospholipid . في مزيج الدّهن هذا, ستّة أحماض دهنيّة تختلق تقريبًا 90 % من المجموع, و هي مايريستيد Myristic , بالميتيك Plamitic , بالميتولييك Palmitoleic , استياريك Stearic , الزيتيك Oleic و لينولييك Linoleic . تنويع تكوين غذائك يمكن أن يُنوّع تركيبة الحامض الدّهنيّ في النّسيج الشّحميّ.
      الوزن المُتبقّي للنّسيج الشّحميّ الأبيض مُكوّن من الماء 5 إلى 30 % و بروتين 2 إلى 3 % .

      النّسيج الشّحميّ الأبيض لا يحتوي على أوعية دموية كثيرة كالنسيج الشحميّ البنّيّ, لكنّ كلّ خلية شحمية في النّسيج الشّحميّ الأبيض على إتّصال مع على الأقلّ شُعيرة دموية. يزوّد مخزون الدّم هذا دعم كافي لعمليّة التّمثيل الغذائيّ النّشيطة الّتي تحدث في الإطار الرّفيع الذي يُحيط بقُطيرة الدّهن و تعتمد كمية تدفّق الدّم إلى النّسيج الشّحميّ الأبيض على وزن الجسم و الحالة الغذائيّة, يزيد تدفق الدّم أثناء الصّوم.
      تنشأ الخلايا الشحمية من خلايا بدائية شبيهة بالأرومات الليفية Fibroblast-Like Precursor Cells و الّتي تتطور لتُصبح خلايا شحمية تحت الظروف المُنشطة المُناسبة. لا تمتلك هذه الخلايا أيّ علامة إنزيميّة (خمائر) أو تركيبية يمكن أن تُسْتَخْدَم لتحديد ما إذا كانت سوف تتطور لتُصبح خلايا شحمية مما يجعل التعرف المُبكر على الخلايا الشحمية صعباً جداً. و المعيار للتّعرّف المُبكر على الخلايا الشحمية يعتمد على تراكم الدّهن فيها بعد أن قد تتوقف عن االتكاثر.
      حجم كتلة النّسيج الشّحميّ يتحدد بعدد الخلايا الشحمية و حجمها. أي يُمكن أن تحدث الزّيادة في كتلة النّسيج الشّحميّ بفرط التنسّج (نمو هيبربلاستيك) Hyperplasia الّذي هو زيادة في عدد الخلايا الشحمية. تحدث هذه الزّيادة في العدد أصلاً بالنّشاط المرتبط بالإنقسام الخلويّ في خلايا الباكورة (الخلايا البدائية التي تنشأ منها الخلايا الشحمية). و يمكن أن تزيد كتلة النّسيج الشّحميّ أيضًا بفرط الضخامة (نمو هيبرتروفيك) Hypertrophy الّذي هو زيادة في حجم الخلية الشحمية و تحدث هذه الزّيادة بتراكم الدّهن في الخليّة.
      نموّ النّسيج الشحمي في الفأر يحدث في مراحل مُعينة. من الميلاد إلى 4 أسابيع من العمر, يكون نموّ النّسيج الشّحميّ هو هيبربلاستيك أي بزيادة عدد الخلايا. إتخام فأر بالغذاء أثناء هذه الفترة يمكن أن يؤدّي إلى زّيادة دّائمة في وزن الجسم و عدد الخلايا الشحمية. من 4 إلى 14 أسبوع من العمر يحدث تضخّم في حجم الخلايا الشحمية (هيبرتروفيك) و فرط تنسُج (هيبربلاستيك). بعد 14 أسبوع من العمر, نموّ النّسيج الشّحميّ يحدث في الغالب بتضخّم في نموّ الخلايا الشحمية (هيبرتروفيك).
      التّسلسل الإنمائيّ للنسيج الشحميّ في الإنسان غير معروف جيداً. فترتان لنموّ هيبربلاستيك ربّما أثناء الفصل الثّالث للحمل و فقط قبيل و أثناء البلوغ. بعكس الإيمان السابق, النموّ الهيبربلاستيكي (زيادة في عدد الخلايا الشحمية) يمكن أن يحدث أيضًا في البالغين ( في كلا النّاس و الفئران ). عندما يمتلئ النسيج الشحمي بالدّهن و يصل إلى الحجم الحرج, خلايا الباكورة تنشط و تنقسم لتنشأ خلايا شحمية جديدة, و هذا لا يحدث مع الأكل المُعتدل و إنما مع فرط الإتخام و لمدّة الطّويلة. بالإضافة لذلك, هناك اختلافات فرديّة بين الأشخاص ربّما في الحجم الحرج للنسيج الشّحمي الّذي سيتسبّب في تشكيل خلايا شحمية جديدة. بمجرّد أنّ تنشأ خلايا شحمية جديدة, تبقى هذه الخلايا مدى الحياة و فقط التّقليل في حجم الخليّة ممكن. لذى الزيادة العددية للخلايا الشحمية له تطبيقات و آثار واسعة النّطاق في علاج و منع البدانة (السُمنة).

      عمليّة التّمثيل الغذائيّ في النّسيج الشّحميّ
      Adipose Tissue Metabolism

      تكوّن الشحم "الدهن" (ليبوجينيسيس ) Lipogenesis

      ليبوجينيسيس هو تكوّن (تخليق) الشحم و تخزينه. تحدث هذه العمليّة في النّسيج الشّحميّ و في الكبد . الدهون المأخوذة عن طريق الأكل و الفائضة عن حاجة الجسم لإنتاج الطاقة تُخَزَّن في النّسيج الشّحميّ. بالإضافة لذلك, الكربوهيدرات (النشويات) و البروتين المُستهلكان في الغذاء يمكن أن يُحَوَّلَا إلى شحوم عندما يكونان أكثر من حاجة الجسم. كما يمكن أن تُخَزَّن الكربوهيدرات على هيئة الجليكوجين Glycogen لتزويد الجسم بالجلوكوز (السكر) أثناء الصوم في الكبد و العضلات. الكربوهيدرات يمكن أن تُحَوَّل إلى الترايجليسيريد (دهون ثلاثية) أيضًا في الكبد ثم تُنقل إلى النّسيج الشّحميّ للتّخزين. الأحماض الأمينيّة من البروتينات في الغذاء تُستخدم لتخليق البروتين الجديد أو يمكن أن تتحول إلى الجلوكوز و الدّهون الثُلاثية.
      الأحماض الدّهنيّة, على شكل ترايجليسيريد أو الأحماض الدّهنيّة الحرّة سواء كان مصدرها الأكل أو التكوين في الكبد ترتبط إلى بروتين الألبيومين Albumin في الدم للتنقل. تكوين صغير جدًّا للأحماض الدّهنيّة الحرّة يحدث في النسيج الشحمي. الترايجليسيريد (الدهون الثُلاثية) هي أكبر مصدر للأحماض الدّهنيّة, لأنّ هذا هو الشّكل الّذي فيه تُجَمَّع الدّهون الغذائيّة بالأمعاء و الكبد. الترايجليسيريد المُتكوّن من سلسلة طويلة من الأحماض الدهنيّة, على شكل كيلوميكرونز ( من الإمتصاص المعويّ للدهون ) Chylomicrons أو بروتينات دهنيّة ( من التّركيب الكبديّ ) Lipoproteins , يُحَلَّل إلى جليسرول Glycerol و أحماض دّهنيّة حُرّة Free Fatty Acids بأنزيم يُسَمَّى انزيم ليبيز البروتين الشّحمي Lipoprotein Lipase (LPL) (الخميرة الحَالة للبروتين الشحمي). انزيم ليبيز البروتين الشّحمي يُكوّن في الخلايا الشحمية و يُفرز في الخلايا الغشائيّة المُجاورة. الكيلوميكرونز و البروتينات الشّحمية ( بروتينات شحمية ذات كثافة منخفضة جدًّا ) Very Low Ddensity Lipoproteins (VLDL) يحتوون على أبوبروتين سي C-ll Apoprotein الّذي بدوره يُنشّط الليبيز. تلتهم الخلايا الشحمية الأحماض الدّهنيّة الحُرّة ت و تُحولها مرة أخرى إلى الترايجليسيريد للتخزين و ذلك بالإتحاد مع الجليسرول. الجلوكوز (السكر) هو المصدر الرئيسي للجليسرول لإتمام هذه العملية حيث أن الدهون الثُلاثية المُتحللة تعطي كمية غير كافية لإتمام هذا التحوّل.
      هرمون الأنسولين الذي تفرزه خلايا بيتا في البنكرياس مُهم لإتمام عملية تخزين الشحوم حيث أنه يُنشط الليبيز الحال للشحوم البروتينية و يُحرض دخول الجلوكوز (السكر) الخلايا الشحمية لإمدادها بالجليسرول. أخيرًا, تحويل الجلوكوز (السكر) Glucose إلى الأحماض الدّهنيّة يُنْجَز بتنشيط الأنسولين لعدّة أنزيمات.

      </IMG>
      رسم توضيحي يُبين عملية تخزين و تحلّل الشحوم في الجسم.

      التّحلّل الشّحمي "الدهني" (ليبوليسيس ) Lipolysis

      التّحلّل الشّحمي هو التّحلّل و التّحرير الكيميائيّان للشّحوم من النّسيج الشّحميّ. تحلّل الشحوم يتم عندما يحتاج الجسم لطاقة إضافيّة. الترايجليسيريد في الخلايا الشحمية يتحلّل تحت تأثير مُركب مُتعدّد الأنزيمات يُسَمَّى الليبيز الحسّاس للهرمون Hormone Sensitive Lipase (HSL) الّذي يحلّل الترايجليسيريد إلى الأحماض الدّهنيّة الحُرّة و الجليسرول. بمجرّد أن يتحَلَّل الترايجليسيريد إلى الأحماض الدّهنيّة و الجليسرول, تُحَرَّر الأحماض الدهنية الحُرة للعضلات الهيكليّة, العضلة القلبيّة و الكبد لإستخدامها كمصدر للطاقة.
      يُقلّل الأنسولين تحلّل الشحوم و خروج الأحماض الدّهنيّة الحُرة من النّسيج الشّحميّ بإعاقة انزيم ليبيز الترايجليسيريد Triglyceride Lipase .

      توزيع النّسيج الشّحميّ
      Adipose Tissue Distribution

      من المُلاحظ أن الجميع لا يحملون نسيجهم الشّحميّ في نفس االمناطق من الجسم. النّسيج الشّحميّ الواقع في الغالب في الجزء العلويّ من الجسم يُسمى التوزيع الذكريّ Android , المركزي, الرجولي , العلوي , أو توزيع التّفّاحة Apple Distribution . نمط التّوزيع هذا يُوجَد بشكل مُتزايد في الرّجال, بالتّالي أسماء المصطلحات المذكورة. عندما يتراكم النّسيج الشّحميّ في الغالب في الجسم السّفليّ, أنثوي Gynoid , نسائي , سُفليّ, أو توزيع الكمّثرى Pear Distribution . هذا النّمط يُوجَد بشكل مُتزايد في النّساء منه في الرّجال و لهذا سُمي ّبأنثوي.

      </IMG>
      رسم توضيحي لتوزيع الشحوم في الجزء العلوي من الجسم "التفاحة" و الجزء السُفلي من الجسم "الكمثرى".

      ما هيّ العوامل التي تحدّد توزيع الشحوم في الجسم؟
      العامل الرّئيسيّ هو الخلفيّة الجينيّة Genetic Background الّتي يُمكن أن تُميّز بالنّظر إلى التّشابه في توزيع الشحوم في أعضاء العائلة الواحدة من نفس الجنس. كما هو مذكور سابقاً, الجنس (ذكر أم أنثى) معروف أيضًا بأنه يؤثّر على مناطق توزيع الشحوم في الجسم. النّساء عادة يكون لديهم نمط توزيع الشحوم السُفليّ و الرّجال لديهم نمط توزيع الشحوم العلويّ. بينما قد يتغيّر توزيع النسيج الشّحمي في الجسم حسب عمر الفرد. على سبيل المثال, بعد سنّ اليأس عند النساء يتغير توزيع الشحوم من الجزء السُفلي للجسم إلى الجزء العلويّ منه. هذا التّغيير قد يكون بسبب انخفاض نسبيّ في نشاط انزيم الليبيز الحال للبروتينات الشحمية في منطقة الجسم السّفليّة. أخيرًا, التأرجح الشديد في وزن الجسم بين السُمنة و النحافة قد يزيد من تراكم الشحوم في الجزء العلويّ من الجسم. تراكم الشحوم في الجزء العلويّ من الجسم يُرْبَط بنموّ مشاكل الصّحّة المختلفة, متضمّنًا أمراض القلب, إرتفاع ضغط الدّم و مرض السكري النوع الثاني.

      إن الشحوم العميقة (الأحشائية-داخل البطن و الصدر) Visceral Fat الزّائدة و المُتراكمة في الجزء العلوي من الجسم مُرتبطة بعامل خطورة أعلى لحدوث الأمراض و خاصة أمراض القلب. مُعدل نسبة الخصر إلى الورك (الحوض)
      Waist:Hip Ratio هو إختبار سريع و بسيط يُبين عامل الخطورة هذا, و يُحسب بتقسيم قياس مُحيط الخصر بالسنتيميتر على قياس مُحيط الورك بالسنتيميتر. النّساء في خطر إذا تجاوزت النّسبة 0.80 , للرّجال النّسبة 1.0 .

      تعريف و أسباب البدانة "السُمنة"

      البدانة ليست خلل أو علة واحدةً. طرق و معايير كثيرة تُستخدم لتشخيص وجود البدانة. إنها كمّيّة النّسيج الشّحميّ في الجسم و ليس فقط وزن الجسم الكلّيّ الّذي يُعرّف البدانة. تُساهم عدّة عوامل في حدوث البدانة : وراثية, بيئية, فيزيائية "جسدية", نفسية, و عوامل أخرى غير معروفة.
      في الدراسات على الحيوانات التّجريبيّة أمكن التعرف على إعتلالات وراثية (جينية) واضحة بأنها هي السبب الأساسي للبدانة. في البشر, البدانة سمة عدّة مُتلازمات وراثية مثل مُتلازمة بارديت-بيدل Bardet-Biedl ,لورانس-مون Lawrence-Moon و بريدر-لابهارت-ويللي Prader-Labhart-Willi , بالإضافة إلى أمراض تخزين الترايجليسيريد Triglyceride Storage Diseases,هذه المُتلازمات نادرة نسبيًّا. لم يُتعرّف بعد على عيب جينيّ (وراثي) وحيد في غياب مُتلازمات جينيّة مُتّفقة أخرى كسبب للبدانة في الإنسان. تؤثّر الجينات (الوراثة) على حجم الجسم و توزيع الشحوم فيه, و من المُحتمل جداً أن تُستخدم في تعديل و علاج البدانة في الإنسان مُستقبلاً.
      من الصعب جداً أن نفصل العوامل الوراثيّة عن العوامل البيئيّة في حدوث البدانة و تطورها و معرفة مُساهمة كل عامل منهما. عدّة دراسات على التّواءم, و أطفال التّبنّي قد زوّدت بيانات مثيرة قويّة لعنصر الوراثة في البدانة, بالإضافة إلى تعديل الجينات بالعوامل البيئيّة.
      تتضمّن التّأثيرات البيئيّة على البدانة مقدار الطّعام و درجة النّشاط الجسديّ.
      دراسات مقدار الطّعام في النّاس تكون غير مثمرة لأن الأفراد البدينين يخفون معلومات عن كمّيّة الطّعام الّذي يأكلونه. أيضًا يمكن أن تُؤثّر نوعية الغذاء على البدانة. الأفراد السّمان عادة يستهلكون أطعمة مرتفعة السّعرات الحراريةأكثر من الأفراد ذوي الأوزان الطبيعية.

      أيضًا, كمّيّة الطّاقة الّتي يصرفها الفرد ستُؤثّر على تطوّر البدانة. مستوى النّشاط المُتزايد مُرتبط بالرّشاقة. بخلاف الطّاقة المصروفة أثناء التّمرين و النشاط الحركي, التّغييرات الخاصّة بالتّمثيل الغذائيّ التي تُحدثها الرياضة أيضًا تُؤثر على إستغلال و تخزين الشحوم, حيث أن الأفراد الرياضيين تكون لديهم عملية التحلّل الشحمي (الدهني) نشطة أكثر بالمقارنة مع الأشخاص الخمولين.
      عدّة عوامل فسيولوجيّة (جسدية) قد تكون مُشتركة في نموّ البدانة. و هي تتضمن تغيير في عمليّة التّمثيل الغذائيّ في النّسيج الشّحميّ, تّغيُرات هرمونيّة و تّغيُرات في المواقع الّتي تتحكم بالتّشبّع (الإحساس بالشبّع)
      Satiety Control sites في المخّ خصوصًا في منطقة ما تحت المِهاد Hypothalamus . قد يكون هناك إشارة شّاذّة تُؤثّر على عمليّة التّمثيل الغذائيّ في النّسيج الشّحميّ و تُغيّر تقسيم الوقود, حيث يحدث تّخزين مُتزايد للشحوم (الدهون) في النّسيج الشّحميّ بدلاً من إستخدامها كوقود في العضلات. مستوى (كميات) انزيم ليبيز البروتين الدّهنيّ يكون عال في الأشخاص السّمان, و هذا الأنزيم يمكن أن يزيد تخزين الترايجليسيريد في النّسيج الشّحميّ.
      التّغييرات الهرمونيّة الّتي قد تؤثّر على البدانة تتضمّن فرط مستوى الأنسولين في الدم (هيبرينسلينايميا) Hyperinsulinemia و تغييرات في الغدّة النّخاميّة أو الكظرية ( مُتلازمة كوشينج) و قصور الغدة الدرقية . التّغييرات الهرمونيّة أثناء الحمل تؤهل الحامل للإصابة بالبدانة. إذا كانت زيادة الوزن زائدةً جداً, يمكن أن تُتسبّب بدانة مدى الحياة.
      دور المُتغيّرات السّيكولوجيّة (النفسية) في تطوّر البدانة صعب للتّعريف. ليس لدى بعض الأفراد البدينين إضطرابات غذائيّة. قد يأكل الأفراد البدينون ردًّاً على التوتّر أو الإكتئاب. كذلك بعض الأفراد البدينون قد يأكلون الوجبات الكبيرة أو قد يأكلون بسرعة. هو قد اُقْتُرِحَ أن قد يكون بعض الأفراد البدينين أكلة مُلتزمون أيضًا, و عندما يكون هناك تغيير في روتينهم المُعتاد, يردّون بالأكل الزّائد.
      بالرّغم من أنّ عدد من الآليّات قد تُعُرِّفَتْ لنموّ البدانة, الصّورة الدّقيقة غير واضحة بالمرّة. لأفراد كثيرين, قد يكون هناك عيب بيولوجيّ خفيّ. عندما يُقابل هذا الفرد معرضًا جيّدًا وفيرًا, الطّعام المُرتفع السّعرات الحرارية في بيئة كسولة, فإنه يُصاب بالبدانة.
      أيضًا مهمّ جداً حقيقة أن بينما قد يفقد اُناس كثيرون الوزن, هناك نجاح قليل في المُحافظة على الوزن. الأسباب لهذه الإنتكاس و الحلول المُمكنة هي تركيز البحوث الحاليّة



      .............................................................................................................................

      الايض اثناء الصيام
      Body Metabolism During Fasting

      فرض الله سبحانه و تعالي الصيام Fasting في شهر رمضان المُبارك, و للصيام فوائد جسدية بجانب الغرض الأساسي من تشريعه ألا و هو التقوى و التقرب إلى الله تعالى. في هذا الموضوع سوف نتناول التغيرات الجسدية (الفيزيائية أو الفسيولوجية) التي تطرأ على الجسم أثناء الصيام.
      يحتاج جسم الإنسان الطبيعي هذه المصادر لإنتاج الطاقة لكي يعيش بنسب مُختلفة
      - الكربوهيدرات Carbohydrates (النشويات) 50%
      - الدهون Fat 35%
      - البروتينات Proteins 15% .
      الأيض أو الإستقلاب Metabolism هو عبارة عن التفاعلات الكيميائية التي عن طريقها يستخدم الجسم المصادر سابقة الذكر لتوليد الطاقة و إنتاج العناصر الأساسية للحياة لكي يعيش و يُحافظ على نفسه سليماً صحيحاً. و تختلف التفاعلات الأيضية التي تحدث في الجسم في حال الأكل عنها في حال الصيام.


      ماذا يحدث عندما نأكل؟

      يلعب الجلوكوز Glucose (السكر) من الكربوهيدرات الدور الرئيسي, فعندما نأكل و ينتقل الجلوكوز من الأمعاء إلى الدم فأنه يزيد من إفراز هرمون الأنسولين Insulin من خلايا بيتا Beta Cells الموجودة في جزر لانجرهانز
      Islets of Langerhans في البنكرياس Pancreas و تحدث التفاعلات الأيضية التالية:
      • زيادة مرور الجلوكوز من الدم إلى مختلف الأنسجة في الجسم لإستخدامه لإنتاج الطاقة و خاصة المخ و خلايا الدم فأنهما يعتمدان كلياً على الجلوكوز للعيش.
      • يزيد تكوين Lipogenesis و تخزين الشحوم في الجسم و ذلك بتحويل الأحماض الدهنية الحُرة
        Free Fatty Acids من الطعام إلى دهون ثلاثية Triglycerides و تخزينها في النسيج الشحمي Adipose Tissue و هذه العملية تتطلب توفر الجلوكوز.
      • يقل تحطيم الشحوم Lipolysis في الجسم و يقل استخدامها كوقود.
      • يزيد إنتاج الكوليستيرول.
      • تكوين Glycogenesis و تخزين الكبد و العضلات للجلوكوز في هيئة جلايكوجين Glycogen و الذي عبارة عن سلاسل مُتشعبة من الجلوكوز و يُشكل مخزون فوري للطاقة عند الحاجة. يحتوي الكبد على 75 جرام من الجلايكوجين المخزون.
      • تستخدم العضلات الأحماض الأمينية Amino Acids من البروتينات لبناء الألياف العضلية و كذلك خلايا الأنسجة الأخرى لبناء و تعويض ما اُتلف منها.

      </IMG>
      رسم توضيحي يُبين التفاعلات الأيضية في حال توفر الطعام و الأكل.



      ماذا يحدث عندما نصوم؟

      في حال الصيام يقل مستوى الجلوكوز في الدم عموماً مما يؤدي إلى تثبيط إفراز الأنسولين (يقل) و يزيد من إفراز هرمون الجلوكاجون Glucagon من خلايا ألفا Alpha Cells الموجودة في جزر لانجرهانز Islets of Langerhans في البنكرياس Pancreas و تحدث التفاعلات الأيضية التالية:
      • يبدأ الكبد بتحطيم الجلايكوجين Glycogenolysis إلى جلوكوز و طرحه في الدم لتستخدمه الأنسجة التي تعتمد عليه لإنتاج الطاقة (المخ و كريات الدم), و بعد 8 - 12 ساعة ينفد مخزون الكبد من الجلايكوجين.
        الجلايكوجين المخزون في العضلات تستخدمه العضلات للطاقة و لا يُساهم في الجلوكوز الذي في الدم.
      • تبدأ عملية تحطيم الشحوم Lipolysis في النسيج الشحمي و طرح الأحماض الدهنية الحُرة Free Fatty Acids في الدم و التي تستخدمها العضلات لإنتاج الطاقة.
      • يبدأ الكبد بإنتاج الأجسام الدهنية (الكيتونية) Ketone Bodies من الأحماض الدهنية الحُرة و طرحها في الدم لكي تُستخدم كوقود للجسم.
      • يبدأ الكبد بإنتاج الجلوكوز Gluconeogenesis بعد نفاد الجلايكوجين من الأحماض الأمينية Amino Acids و التي يكون مصدرها البروتين في العضلات الهيكلية Skeletal Muscles , و يستخدم الجسم من 75 - 100 جرام من العضلات لهذا الغرض (أي يفقد الجسم هذا المقدار من وزن العضلات أثناء الصيام). طبعاً كما ذكرنا سابقاً إنتاج الجلوكوز ضروري للأنسجة الحيوية التي تعتمد عليه في الجسم و هي الجهاز العصبي و خلايا الدم.
      • يستخدم الكبد الجليسرول Glycerol الذي ينتج من تحطيم الشحوم في إنتاج الجلوكوز, و يستخدم من
        15 - 20 جرام لهذا الغرض.
      • يُقلل من إنتاج الجسم للكوليسترول.

      </IMG>
      رسم توضيحي يُبين التفاعلات الأيضية في حال الصيام.

      أحب أن أذكر نقطة توضيحية, الجهاز العصبي و خلايا الدم تعتمد كلياً على الجلوكوز في العيش و لكن مع استمرار الصيام (المجاعة) تنشط الخمائر (الأنزيمات) التي تُمكن هذه الأنسجة من استخدام الأجسام الكيتونية لإنتاج الطاقة


      ............................................................................................................................

      الغده الدرقيه
      Thyroid Gland


      الغدة الدرقية Thyroid Gland هي أحد الغدد الصماء المهمة و الحيوية في الجسم. و تُسمى هذه الغدد بالصماء لأنها ليست لديها قناة تصب من خلالها إفرازاتها , و إنما تصب مباشرة في الدم.
      تتحكم هرمونات الغدة الدرقية في أيض Metabolism معظم الأنسجة في الجسم .
      تقع الغدة الدرقية في أسفل مقدمة الرقبة , و تتكون من فصين Lobes , فص أيمن و فص أيسر يربطهما برزخ Thyroid Isthmus .
      و الغدة الدرقية مجاورة للغضروف الدرقي للحنجرة Thyroid Cartilage و مرتبطة به (لهذا تتحرك الغدة الدرقية للأعلى و الأسفل أثناء عملية البلع) و أعلى القصبة الهوائية Trachea .
      و تتكون الغدة الدرقية في الجنين من قاعدة اللسان و من ثم تنحدر أثناء تكونها و تطورها إلى أسفل الرقبة.

      </IMG>

      تتكون الغدة الدرقية من جُريبات Follicles تحتوي على الغلوبيولين الدرقي (ثايروغلوبيولين) Thyroglobulin و الذي هو مصدر هرمون الثايروكسين. تنتج و تفرز الغدة الدرقية هرمون الثايروكسين في صورتيه الثايرونين رُباعي اليود Tetra-Iodo-Thyronine (T4) و الثايروكسين ثُلاثي اليود Tri-Iodo-Thyronine (T3), و اليود Iodide ضروري لإنتاج و إفراز الثايروكسين و نقصه يؤدي إلى تضخم الغدة الدرقية (الدُراق) Goitre .
      </IMG>

      صورة مجهرية لشريحة مقطعية من الغدة الدرقية على اليسار و رسم توضيحي مُكبر على اليمين للجُريبات.




      تفرز الغدة الدرقية T4 أكثر من T3 , و لكن كمية كبيرة من T4 تتحول إلى T3 في الأنسجة مثل الكبد و الكلى و العضلات. T3 هو الأكثر فعالية و يوجد منه نوع غير فعال (خامل) في الدم يُسمى الثايروكسين ثلاثي اليود الإنعكاسي Reverse Tri-Iodo-Thyronine (rT3).
      99% من هرمون الثايروكسين في الدم مُرتبط ببروتين يُدعى الغلوبيولين الرابط للثايروكسين Thyroxine-Binding-Globulin , و الكمية الحُرة من الهرمون (1%) هي الفعالة , و يرتبط الثايروكسين ثلاثي اليود بمُستقبلات خاصة في نواة الخلية لأداء عمله.
      إنتاج و إفراز هرمون الثايروكسين يقع تحت سيطرة المحور تحت السريري النُخامي Hypothalamic-Pituitary-Axis , حيث أن منطقة ما تحت السرير في المخ (الهايبوثلاميس) Hypothalamus تفرز الهرمون المُطلق للثايروتروبين Thyrotropic -releasing -Hormone (TRH) و الذي يعمل على الغدة النُخامية لتفرز بدورها الهرمون المُحرض للغدة الدرقية Thyroid -Stimulating -Hormone و الذي يعمل على تحريض الغدة الدرقية لتُنتج و تفرز هرمون الثايروكسين.
      و كلما نقص الثايروكسين في الدم يزداد إفراز هذه الهرمونات و بالعكس إذا زادت كميتة في الدم نقص إفراز هذه الهرمونات و هذا ما يُسمى بالتلتقيم الراجع السلبي Negative Feedback Mechanism , و مهمته هي المحافظة على المستوى الطبيعي للهرمون في الدم لأداء عمله على أكمل وجه.


      ...........................................................................................................................


      تحياتى

      ~!@@ad a7la^walad~!@@ad