دروس للعلوم والتكنلوجيا للطلاب والهواة

    • دروس للعلوم والتكنلوجيا للطلاب والهواة

      بسم الله الرحمن الرحيم


      الحمد لله رب العالمين حمدا كثيرا طيبا مباركا



      والصلاة والسلام على أشرف الأنبياء والمرسلين.


      أم بعد:



      أخواني في الله.... كم يسعدني ويسرني أن أبداء معكم في هذه الساحة بتقديم كل ما يفيد في العلوم والتكنلوجيا،لنشر العلم ، ونواجه تحديات العصر بالتعلم والإجتهاد والممارسة العلمية بشتى أنواعها،ولا أخفي لكم أن علوم الفيزياء والرياضيات أصبحت في مقدمة القوى العلمية،التي أخذت الجانب الأكبر في صنع تطور التكنلوجيا وغيرها.... لا أريد أن أطيل معكم، بكوني سأتحدث باللغة الإنجليزية،حتى تتضح المفاهيم بصورة أسرع للدارسين من جميع المستويات...



      Here we go, to get the total understanding; I really hope that you should follow the lessons from the beginning. The machinery of the lessons will be in three different areas. First area, physic, which will lead you to the real Physical World and make you known it from Zero as you are a beginner or even have a good level in physic, by any way, I’m going to start with this really interesting area and hopefully that all of you will share me. Second area, will talk about science explanations or even can brief it in one word “Technology”, and this one will lead you to discover the transference of physic theories to practical useful needs. Last area, will talk and discuss the mathematics and all what is related to it in practical life. I really hope that we all are going to enjoy touch and taste the flavor of knowledge.

      Yours lovely brother: Abu Omar "arabic100


      ?What is physics
      Humans have always been curious about the world around them. The night sky with its bright celestial objects has fascinated humans since time immemorial. The regular repetitions of the day and night. The annual cycle of seasons. The eclipses, the tides , the volcanoes, the rainbow have always been a source of wonder. The world has an astonishing variety of materials and a bewildering diversity of life and behaviour. The inquiring and imaginative human mind has responded to the wonder and awe of nature in different ways. One kind of response from the earliest times has been to observe the physical environment carefully. Look for any meaningful patterns and relations in natural phenomena, and and build and use new tools to interact with nature. This human endeavour led in course of time to modern science and technology.
      That was as the introduction about the general meaning of physics. Now, I’m going to start with the first lesson of physics that is Units and Measurements. And note that you should get any files for tables or figures which belong to the lessons that I will accompany along with them. Have nice learning.
      : Units and Measurements
      The system of units which is at present internationally accepted for measurement is the system internationale d’ unints( French for International System of Units), abbreviated as SI. The SI, with standard scheme of symbols, units and abbreviations, was developed and recommended by General Conference on Weights and Measures in 1971 for international usage in scientific, technical, industrial and commercial work. Because of the decimal nature of the SI units, based on powers of 10, convenient. SI is the modernized and developed version of metric system.
      In SI, there are seven base units as given in the accompanied table “below”, besides the seven SI base units, there are two more units that are defined for plane angle and solid angle. The unit for plane angle is radian with the symbol rad and the unit for the solid angle is steradian with symbol Sr.





      That were only as the basics which should be known at the beginning of physics learning. I’m feeling tired so excuse me to complete later. And next time will insert you in bigger fields of physics and technology. Gust, remember to be patient and well followed for me

      All the rights are saved to me Abu Omar (arabic100
    • Good morning dears; today I’m going to show some interesting thing in physics, but before going there, I must express the others SI units, which consider as the basic for physics

      [FONT='Arial','sans-serif']Examples of SI derived units[/FONT]
      [FONT='Times New Roman','serif']Derived quantity[/FONT]

      [FONT='Times New Roman','serif']Name[/FONT]

      [FONT='Times New Roman','serif']Symbol[/FONT]

      [FONT='Times New Roman','serif']area[/FONT]
      [FONT='Times New Roman','serif']square meter[/FONT]
      [FONT='Times New Roman','serif']m2[/FONT]
      [FONT='Times New Roman','serif']volume[/FONT]
      [FONT='Times New Roman','serif']cubic meter[/FONT]
      [FONT='Times New Roman','serif']m3[/FONT]
      [FONT='Times New Roman','serif']speed, velocity[/FONT]
      [FONT='Times New Roman','serif']meter per second[/FONT]
      [FONT='Times New Roman','serif']m/s[/FONT]
      [FONT='Times New Roman','serif']acceleration[/FONT]
      [FONT='Times New Roman','serif']meter per second squared [/FONT]
      [FONT='Times New Roman','serif']m/s2[/FONT]
      [FONT='Times New Roman','serif']wave number[/FONT]
      [FONT='Times New Roman','serif']reciprocal meter[/FONT]
      [FONT='Times New Roman','serif']m-1[/FONT]
      [FONT='Times New Roman','serif']mass density[/FONT]
      [FONT='Times New Roman','serif']kilogram per cubic meter[/FONT]
      [FONT='Times New Roman','serif']kg/m3[/FONT]
      [FONT='Times New Roman','serif']specific volume[/FONT]
      [FONT='Times New Roman','serif']cubic meter per kilogram[/FONT]
      [FONT='Times New Roman','serif']m3/kg[/FONT]
      [FONT='Times New Roman','serif']current density[/FONT]
      [FONT='Times New Roman','serif']ampere per square meter[/FONT]
      [FONT='Times New Roman','serif']A/m2[/FONT]
      [FONT='Times New Roman','serif']magnetic field strength [/FONT]
      [FONT='Times New Roman','serif']ampere per meter[/FONT]
      [FONT='Times New Roman','serif']A/m[/FONT]
      [FONT='Times New Roman','serif']amount-of-substance concentration[/FONT]
      [FONT='Times New Roman','serif']mole per cubic meter[/FONT]
      [FONT='Times New Roman','serif']mol/m3[/FONT]
      [FONT='Times New Roman','serif']luminance[/FONT]
      [FONT='Times New Roman','serif']candela per square meter[/FONT]
      [FONT='Times New Roman','serif']cd/m2[/FONT]
      [FONT='Times New Roman','serif']mass fraction[/FONT]
      [FONT='Times New Roman','serif']kilogram per kilogram, which may be represented by the number 1[/FONT]
      [FONT='Times New Roman','serif']kg/kg = 1[/FONT]

      [FONT='Times New Roman','serif']Derived quantity

      [FONT='Times New Roman','serif']Name[/FONT]

      [FONT='Times New Roman','serif']Symbol[/FONT]

      [FONT='Times New Roman','serif']area[/FONT]
      [FONT='Times New Roman','serif']square meter[/FONT]
      [FONT='Times New Roman','serif']m2[/FONT]
      [FONT='Times New Roman','serif']volume[/FONT]
      [FONT='Times New Roman','serif']cubic meter[/FONT]
      [FONT='Times New Roman','serif']m3[/FONT]
      [FONT='Times New Roman','serif']speed, velocity[/FONT]
      [FONT='Times New Roman','serif']meter per second[/FONT]
      [FONT='Times New Roman','serif']m/s[/FONT]
      [FONT='Times New Roman','serif']acceleration[/FONT]
      [FONT='Times New Roman','serif']meter per second squared [/FONT]
      [FONT='Times New Roman','serif']m/s2[/FONT]
      [FONT='Times New Roman','serif']wave number[/FONT]
      [FONT='Times New Roman','serif']reciprocal meter[/FONT]
      [FONT='Times New Roman','serif']m-1[/FONT]
      [FONT='Times New Roman','serif']mass density[/FONT]
      [FONT='Times New Roman','serif']kilogram per cubic meter[/FONT]
      [FONT='Times New Roman','serif']kg/m3[/FONT]
      [FONT='Times New Roman','serif']specific volume[/FONT]
      [FONT='Times New Roman','serif']cubic meter per kilogram[/FONT]
      [FONT='Times New Roman','serif']m3/kg[/FONT]
      [FONT='Times New Roman','serif']current density[/FONT]
      [FONT='Times New Roman','serif']ampere per square meter[/FONT]
      [FONT='Times New Roman','serif']A/m2[/FONT]
      [FONT='Times New Roman','serif']magnetic field strength [/FONT]
      [FONT='Times New Roman','serif']ampere per meter[/FONT]
      [FONT='Times New Roman','serif']A/m[/FONT]
      [FONT='Times New Roman','serif']amount-of-substance concentration[/FONT]
      [FONT='Times New Roman','serif']mole per cubic meter[/FONT]
      [FONT='Times New Roman','serif']mol/m3[/FONT]
      [FONT='Times New Roman','serif']luminance[/FONT]
      [FONT='Times New Roman','serif']candela per square meter[/FONT]
      [FONT='Times New Roman','serif']cd/m2[/FONT]
      [FONT='Times New Roman','serif']mass fraction[/FONT]
      [FONT='Times New Roman','serif']kilogram per kilogram, which may be represented by the number 1[/FONT]
      [FONT='Times New Roman','serif']kg/kg = 1[/FONT]


      [/FONT]

      [FONT='Arial','sans-serif']SI derived units with special names and symbols[/FONT]
      [FONT='Times New Roman','serif']Derived quantity[/FONT]

      [FONT='Times New Roman','serif']Name[/FONT]

      [FONT='Times New Roman','serif']Symbol [/FONT]

      [FONT='Times New Roman','serif']Expression
      in terms of
      other SI units[/FONT]

      [FONT='Times New Roman','serif']Expression
      in terms of
      SI base units[/FONT]

      [FONT='Times New Roman','serif']plane angle[/FONT]
      [FONT='Times New Roman','serif']radian (a)[/FONT]
      [FONT='Times New Roman','serif']rad[/FONT]
      [FONT='Times New Roman','serif'] -[/FONT]
      [FONT='Times New Roman','serif']m·m-1 = 1 (b)[/FONT]
      [FONT='Times New Roman','serif']solid angle[/FONT]
      [FONT='Times New Roman','serif']steradian (a)[/FONT]
      [FONT='Times New Roman','serif']sr (c)[/FONT]
      [FONT='Times New Roman','serif'] -[/FONT]
      [FONT='Times New Roman','serif']m2·m-2 = 1 (b)[/FONT]
      [FONT='Times New Roman','serif']frequency[/FONT]
      [FONT='Times New Roman','serif']hertz[/FONT]
      [FONT='Times New Roman','serif']Hz[/FONT]
      [FONT='Times New Roman','serif'] -[/FONT]
      [FONT='Times New Roman','serif']s-1[/FONT]
      [FONT='Times New Roman','serif']force[/FONT]
      [FONT='Times New Roman','serif']newton[/FONT]
      [FONT='Times New Roman','serif']N[/FONT]
      [FONT='Times New Roman','serif'] -[/FONT]
      [FONT='Times New Roman','serif']m·kg·s-2[/FONT]
      [FONT='Times New Roman','serif']pressure, stress[/FONT]
      [FONT='Times New Roman','serif']pascal[/FONT]
      [FONT='Times New Roman','serif']Pa[/FONT]
      [FONT='Times New Roman','serif']N/m2[/FONT]
      [FONT='Times New Roman','serif']m-1·kg·s-2[/FONT]
      [FONT='Times New Roman','serif']energy, work, quantity of heat [/FONT]
      [FONT='Times New Roman','serif']joule[/FONT]
      [FONT='Times New Roman','serif']J[/FONT]
      [FONT='Times New Roman','serif']N·m[/FONT]
      [FONT='Times New Roman','serif']m2·kg·s-2[/FONT]
      [FONT='Times New Roman','serif']power, radiant flux[/FONT]
      [FONT='Times New Roman','serif']watt[/FONT]
      [FONT='Times New Roman','serif']W[/FONT]
      [FONT='Times New Roman','serif']J/s[/FONT]
      [FONT='Times New Roman','serif']m2·kg·s-3[/FONT]
      [FONT='Times New Roman','serif']electric charge, quantity of electricity[/FONT]
      [FONT='Times New Roman','serif']coulomb[/FONT]
      [FONT='Times New Roman','serif']C[/FONT]
      [FONT='Times New Roman','serif'] -[/FONT]
      [FONT='Times New Roman','serif']s·A[/FONT]
      [FONT='Times New Roman','serif']electric potential difference,
      electromotive force[/FONT]

      [FONT='Times New Roman','serif']volt[/FONT]
      [FONT='Times New Roman','serif']V[/FONT]
      [FONT='Times New Roman','serif']W/A[/FONT]
      [FONT='Times New Roman','serif']m2·kg·s-3·A-1[/FONT]
      [FONT='Times New Roman','serif']capacitance[/FONT]
      [FONT='Times New Roman','serif']farad[/FONT]
      [FONT='Times New Roman','serif']F[/FONT]
      [FONT='Times New Roman','serif']C/V[/FONT]
      [FONT='Times New Roman','serif']m-2·kg-1·s4·A2[/FONT]
      [FONT='Times New Roman','serif']electric resistance[/FONT]
      [FONT='Times New Roman','serif']ohm[/FONT]

      [FONT='Times New Roman','serif']V/A[/FONT]
      [FONT='Times New Roman','serif']m2·kg·s-3·A-2[/FONT]
      [FONT='Times New Roman','serif']electric conductance[/FONT]
      [FONT='Times New Roman','serif']siemens[/FONT]
      [FONT='Times New Roman','serif']S[/FONT]
      [FONT='Times New Roman','serif']A/V[/FONT]
      [FONT='Times New Roman','serif']m-2·kg-1·s3·A2[/FONT]
      [FONT='Times New Roman','serif']magnetic flux[/FONT]
      [FONT='Times New Roman','serif']weber[/FONT]
      [FONT='Times New Roman','serif']Wb[/FONT]
      [FONT='Times New Roman','serif']V·s[/FONT]
      [FONT='Times New Roman','serif']m2·kg·s-2·A-1[/FONT]
      [FONT='Times New Roman','serif']magnetic flux density[/FONT]
      [FONT='Times New Roman','serif']tesla[/FONT]
      [FONT='Times New Roman','serif']T[/FONT]
      [FONT='Times New Roman','serif']Wb/m2[/FONT]
      [FONT='Times New Roman','serif']kg·s-2·A-1[/FONT]
      [FONT='Times New Roman','serif']inductance[/FONT]
      [FONT='Times New Roman','serif']henry[/FONT]
      [FONT='Times New Roman','serif']H[/FONT]
      [FONT='Times New Roman','serif']Wb/A[/FONT]
      [FONT='Times New Roman','serif']m2·kg·s-2·A-2[/FONT]
      [FONT='Times New Roman','serif']Celsius temperature[/FONT]
      [FONT='Times New Roman','serif']degree Celsius[/FONT]
      [FONT='Times New Roman','serif']°C[/FONT]
      [FONT='Times New Roman','serif'] -[/FONT]
      [FONT='Times New Roman','serif']K[/FONT]
      [FONT='Times New Roman','serif']luminous flux[/FONT]
      [FONT='Times New Roman','serif']lumen[/FONT]
      [FONT='Times New Roman','serif']lm[/FONT]
      [FONT='Times New Roman','serif']cd·sr (c)[/FONT]
      [FONT='Times New Roman','serif']m2·m-2·cd = cd[/FONT]
      [FONT='Times New Roman','serif']illuminance[/FONT]
      [FONT='Times New Roman','serif']lux[/FONT]
      [FONT='Times New Roman','serif']lx[/FONT]
      [FONT='Times New Roman','serif']lm/m2[/FONT]
      [FONT='Times New Roman','serif']m2·m-4·cd = m-2·cd[/FONT]
      [FONT='Times New Roman','serif']activity (of a radionuclide)[/FONT]
      [FONT='Times New Roman','serif']becquerel[/FONT]
      [FONT='Times New Roman','serif']Bq[/FONT]
      [FONT='Times New Roman','serif'] -[/FONT]
      [FONT='Times New Roman','serif']s-1[/FONT]
      [FONT='Times New Roman','serif']absorbed dose, specific energy (imparted), kerma[/FONT]
      [FONT='Times New Roman','serif']gray[/FONT]
      [FONT='Times New Roman','serif']Gy[/FONT]
      [FONT='Times New Roman','serif']J/kg[/FONT]
      [FONT='Times New Roman','serif']m2·s-2[/FONT]
      [FONT='Times New Roman','serif']dose equivalent (d)[/FONT]
      [FONT='Times New Roman','serif']sievert[/FONT]
      [FONT='Times New Roman','serif']Sv[/FONT]
      [FONT='Times New Roman','serif']J/kg[/FONT]
      [FONT='Times New Roman','serif']m2·s-2[/FONT]
      [FONT='Times New Roman','serif']catalytic activity[/FONT]
      [FONT='Times New Roman','serif']katal[/FONT]
      [FONT='Times New Roman','serif']kat[/FONT]
      [FONT='Times New Roman','serif']s-1·mol[/FONT]
      [FONT='Times New Roman','serif']a)[/FONT][FONT='Times New Roman','serif'] The radian and steradian may be used advantageously in expressions for derived units to distinguish between quantities of a different nature but of the same dimension; some examples are given in Table 4.
      b) In practice, the symbols rad and sr are used where appropriate, but the derived unit "1" is generally omitted.
      c) In photometry, the unit name steradian and the unit symbol sr are usually retained in expressions for derived units.
      d) Other quantities expressed in sieverts are ambient dose equivalent, directional dose equivalent, personal dose equivalent, and organ equivalent dose.[/FONT]




      [FONT='Arial','sans-serif']Examples of SI derived units whose names and symbols include SI derived units with special names and symbols[/FONT]

      [FONT='Times New Roman','serif']Derived quantity[/FONT]

      [FONT='Times New Roman','serif']Name[/FONT]

      [FONT='Times New Roman','serif']Symbol[/FONT]

      [FONT='Times New Roman','serif']dynamic viscosity[/FONT]
      [FONT='Times New Roman','serif']pascal second[/FONT]
      [FONT='Times New Roman','serif']Pa·s[/FONT]
      [FONT='Times New Roman','serif']moment of force[/FONT]
      [FONT='Times New Roman','serif']newton meter[/FONT]
      [FONT='Times New Roman','serif']N·m[/FONT]
      [FONT='Times New Roman','serif']surface tension[/FONT]
      [FONT='Times New Roman','serif']newton per meter[/FONT]
      [FONT='Times New Roman','serif']N/m[/FONT]
      [FONT='Times New Roman','serif']angular velocity[/FONT]
      [FONT='Times New Roman','serif']radian per second[/FONT]
      [FONT='Times New Roman','serif']rad/s[/FONT]
      [FONT='Times New Roman','serif']angular acceleration[/FONT]
      [FONT='Times New Roman','serif']radian per second squared[/FONT]
      [FONT='Times New Roman','serif']rad/s2[/FONT]
      [FONT='Times New Roman','serif']heat flux density, irradiance[/FONT]
      [FONT='Times New Roman','serif']watt per square meter[/FONT]
      [FONT='Times New Roman','serif']W/m2[/FONT]
      [FONT='Times New Roman','serif']heat capacity, entropy[/FONT]
      [FONT='Times New Roman','serif']joule per kelvin[/FONT]
      [FONT='Times New Roman','serif']J/K[/FONT]
      [FONT='Times New Roman','serif']specific heat capacity, specific entropy[/FONT]
      [FONT='Times New Roman','serif']joule per kilogram kelvin[/FONT]
      [FONT='Times New Roman','serif']J/(kg·K)[/FONT]
      [FONT='Times New Roman','serif']specific energy[/FONT]
      [FONT='Times New Roman','serif']joule per kilogram[/FONT]
      [FONT='Times New Roman','serif']J/kg[/FONT]
      [FONT='Times New Roman','serif']thermal conductivity[/FONT]
      [FONT='Times New Roman','serif']watt per meter kelvin[/FONT]
      [FONT='Times New Roman','serif']W/(m·K)[/FONT]
      [FONT='Times New Roman','serif']energy density[/FONT]
      [FONT='Times New Roman','serif']joule per cubic meter[/FONT]
      [FONT='Times New Roman','serif']J/m3[/FONT]
      [FONT='Times New Roman','serif']electric field strength[/FONT]
      [FONT='Times New Roman','serif']volt per meter[/FONT]
      [FONT='Times New Roman','serif']V/m[/FONT]
      [FONT='Times New Roman','serif']electric charge density[/FONT]
      [FONT='Times New Roman','serif']coulomb per cubic meter[/FONT]
      [FONT='Times New Roman','serif']C/m3[/FONT]
      [FONT='Times New Roman','serif']electric flux density[/FONT]
      [FONT='Times New Roman','serif']coulomb per square meter[/FONT]
      [FONT='Times New Roman','serif']C/m2[/FONT]
      [FONT='Times New Roman','serif']permittivity[/FONT]
      [FONT='Times New Roman','serif']farad per meter[/FONT]
      [FONT='Times New Roman','serif']F/m[/FONT]
      [FONT='Times New Roman','serif']permeability[/FONT]
      [FONT='Times New Roman','serif']henry per meter[/FONT]
      [FONT='Times New Roman','serif']H/m[/FONT]
      [FONT='Times New Roman','serif']molar energy[/FONT]
      [FONT='Times New Roman','serif']joule per mole[/FONT]
      [FONT='Times New Roman','serif']J/mol[/FONT]
      [FONT='Times New Roman','serif']molar entropy, molar heat capacity[/FONT]
      [FONT='Times New Roman','serif']joule per mole kelvin[/FONT]
      [FONT='Times New Roman','serif']J/(mol·K)[/FONT]
      [FONT='Times New Roman','serif']exposure (x and rays)[/FONT]
      [FONT='Times New Roman','serif']coulomb per kilogram[/FONT]
      [FONT='Times New Roman','serif']C/kg[/FONT]
      [FONT='Times New Roman','serif']absorbed dose rate[/FONT]
      [FONT='Times New Roman','serif']gray per second[/FONT]
      [FONT='Times New Roman','serif']Gy/s[/FONT]
      [FONT='Times New Roman','serif']radiant intensity[/FONT]
      [FONT='Times New Roman','serif']watt per steradian[/FONT]
      [FONT='Times New Roman','serif']W/sr[/FONT]
      [FONT='Times New Roman','serif']radiance[/FONT]
      [FONT='Times New Roman','serif']watt per square meter steradian[/FONT]
      [FONT='Times New Roman','serif']W/(m2·sr)[/FONT]
      [FONT='Times New Roman','serif']catalytic (activity) concentration[/FONT]
      [FONT='Times New Roman','serif']katal per cubic meter[/FONT]
      [FONT='Times New Roman','serif']kat/m3[/FONT]

    • here we are,,,, to complete our mission in knowledge

      Electricity Basics

      Electricity starts with electrons. If you have understoodHow Atoms Work, you know that every atom contains one or more electrons. You also know that electrons have a negative charge.

      [SIZE=-1]Simplest model of an atom[/SIZE]


      In many materials, the electrons are tightly bound to the atoms. Wood, glass, plastic, ceramic, air, cotton ... These are all examples of materials in which electrons stick with their atoms. Because the electrons don't move, these materials cannot conduct electricity very well, if at all. These materials are electrical insulators.

      But most metals have electrons that can detach from their atoms and move around. These are called free electrons. Gold, silver, copper, aluminum, iron, etc., all have free electrons. The loose electrons make it easy for electricity to flow through these materials, so they are known as electrical conductors. They conduct electricity. The moving electrons transmit electrical energy from one point to another.
      Electricity needs a conductor in order to move. There also has to be something to make the electricity flow from one point to another through the conductor. One way to get electricity flowing is to use a generator



      .
    • Generators


      A generator uses a magnet to get electrons moving.





      There is a definite link between electricity and magnetism. If you allow electrons to move through a wire, they will create a magnetic field around the wire. Similarly, if you move a magnet near a wire, the magnetic field will cause electrons in the wire to move.







      A generator is a simple device that moves a magnet near a wire to create a steady flow of electrons.
      One simple way to think about a generator is to imagine it acting like a pump pushing water along. Instead of pushing water, however, a generator uses a magnet to push electrons along. This is a slight over-simplification, but it is nonetheless a very useful analogy.
      There are two things that a water pump can do with water:
      A water pump moves a certain number of water molecules.
      A water pump applies a certain amount of pressure to the water molecules.
      In the same way, the magnet in a generator can:
      push a certain number of electrons along
      apply a certain amount of "pressure" to the electrons
      In an electrical circuit, the number of electrons that are moving is called the amperage or the current, and it is measured in amps. The "pressure" pushing the electrons along is called the voltage and is measured in volts. So you might hear someone say, "If you spin this generator at 1,000 rpm, it can produce 1 amp at 6 volts." One amp is the number of electrons moving (1 amp physically means that 6.24 x 10[SIZE=-1]18[/SIZE] electrons move through a wire every second), and the voltage is the amount of pressure behind those electrons.
    • مساء الخير جميعا..... أعتذر عن غيابي بل يكاد تجاهلي لصفحتي هذه التي كنت أريد تخصيصها لعرض مواضيع التكنولوجيا والعلوم..... وها أنا أعود إليكم لأقول بأننا سنكمل مشوارنا الذي أبتدأناه والسبب هو أنني وجدت من يريد أن يشاركني هذه العلوم..... فشكرا للجميع...

      بنت الشرقية ..... كوني متابعة معنا ..:)

      عزيزي عماد الدين.... أبارك لك هذه الرغبة في إكتشاف التكنولوجيا والعلوم،وأن شاء الله سنتواصل فيما بيننا.... وأتمنى كذلك أن تتابعنا هنا....:)
      شكر خاص لأختي العزيزة حبي العين،على تواصلها الدائم معنا... وعلى المراعاه الخاصة التي أولتها لهذا الموضوع..... بورك مسعاك...:)